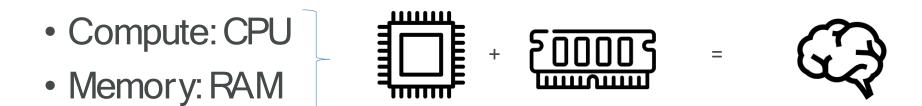

AWS Certified Cloud Practitioner Course CLF-C01

What is Cloud Computing Section

How websites work

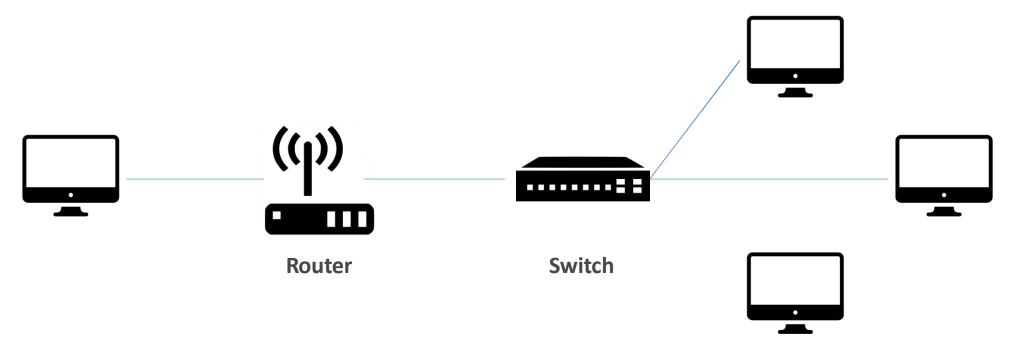

Clients have IP addresses

Servers have IP addresses

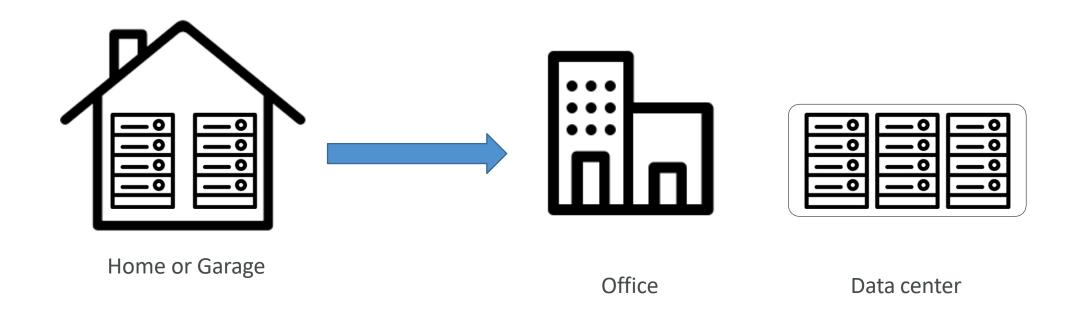
Just like when you're sending post mail!

What is a server composed of?

• Database: Store data in a structured way



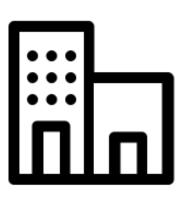
• Network: Routers, switch, DNS server



ITTerminology

- Network: cables, routers and servers connected with each other
- Router: A networking device that forwards data packets between computer networks. They know where to send your packets on the internet!
- Switch: Takes a packet and send it to the correct server / client on your network

Traditionally, how to build infrastructure


Problems with traditional IT approach

- Pay for the rent for the data center
- Payfor power supply, cooling, maintenance
- Adding and replacing hardware takes time
- Scaling is limited
- Hire 24/7 team to monitor the infrastructure
- How to deal with disasters? (earthquake, power shutdown, fire...)
- Can we externalize all this?

What is Cloud Computing?

- Cloud computing is the on-demand delivery of compute power, database storage, applications, and other IT resources
- Through acloud services platform with pay-as-you-go pricing
- You can provision exactly the right type and size of computing resources you need
- You can access as many resources as you need, almost instantly
- Simple way to access servers, storage, databases and a set of application services
- Amazon Web Services owns and maintains the network-connected hardware required for these application services, while you provision and use what you need via a web application.

Office The Cloud

You've been using some Cloud services

Gmail

- E-mail cloud service
- Pay for ONLY your emails stored (no infrastructure, etc.)

Dropbox

- Cloud Storage Service
- Originally built on AWS

Netflix

- Built on AWS
- Video on Demand

The Deployment Models of the Cloud

Private Cloud:

- Cloud services used by a single organization, not exposed to the public.
- Complete control
- Security for sensitive applications
- Meet specific business needs

Public Cloud:

- Cloud resources owned and operated by a thirdparty cloud service provider delivered over the Internet.
- Six Advantages of Cloud Computing

Hybrid Cloud:

- Keep some servers on premises and extend some capabilities to the Cloud
- Control over sensitive assets in your private infrastructure
- Flexibility and costeffectiveness of the public cloud

The Five Characteristics of Cloud Computing

- On-demand self service:
 - Users can provision resources and use them without human interaction from the service provider
- Broad network access:
 - Resources available over the network, and can be accessed by diverse client platforms
- Multi-tenancy and resource pooling:
 - · Multiple customers can share the same infrastructure and applications with security and privacy
 - Multiple customers are serviced from the same physical resources
- Rapid elasticity and scalability:
 - · Automatically and quickly acquire and dispose resources when needed
 - · Quickly and easily scale based on demand
- Measured service:
 - · Usage is measured, users pay correctly for what they have used

Six Advantages of Cloud Computing

- Trade capital expense (CAPEX) for operational expense (OPEX)
 - Pay On-Demand: don't own hardware
 - Reduced Total Cost of Ownership (TCO) & Operational Expense (OPEX)
- Benefit from massive economies of scale
 - Prices are reduced as AWS is more efficient due to large scale
- Stop guessing capacity
 - · Scale based on actual measured usage
- Increase speed and agility
- Stop spending money running and maintaining data centers
- Go global in minutes: leverage the AWS global infrastructure

Problems solved by the Cloud

- Flexibility: change resource types when needed
- Cost-Effectiveness: pay asyou go, for what you use
- Scalability: accommodate larger loads by making hardware stronger or adding additional nodes
- Elasticity: ability to scale out and scale-in when needed
- High-availability and fault-tolerance: build across data centers
- Agility: rapidly develop, test and launch software applications

Types of Cloud Computing

- Infrastructure as a Service (laaS)
 - Provide building blocks for cloud IT
 - Provides networking, computers, data storage space
 - · Highest level of flexibility
 - Easy parallel with traditional on-premises IT
- Platform as a Service (PaaS)
 - · Removes the need for your organization to manage the underlying infrastructure
 - · Focus on the deployment and management of your applications
- Software as a Service (SaaS)
 - · Completed product that is run and managed by the service provider

On-premises	Infrastructure as a Service (laaS)	Platform as a Service (PaaS)	Software as a Service (SaaS)
Applications	Applications	Applications	Applications
Data	Data	Data	Data
Runtime	Runtime	Runtime	Runtime
Middleware	Middleware	Middleware	Middleware
O/S	O/S	O/S	O/S
Virtualization	Virtualization	Virtualization	Virtualization
Servers	Servers	Servers	Servers
Storage	Storage	Storage	Storage
Networking	Networking	Networking	Networking

Managed by you

Managed by others

Example of Cloud Computing Types

- Infrastructure as a Service:
 - Amazon EC2 (on AWS)
 - GCP, Azure, Rackspace, Digital Ocean, Linode
- Platform as a Service:
 - Elastic Beanstalk (on AWS)
 - Heroku, Google App Engine (GCP), Windows Azure (Microsoft)
- Software as a Service:
 - Many AWS services (ex: Rekognition for Machine Learning)
 - Google Apps (Gmail), Dropbox, Zoom

Pricing of the Cloud – Quick Overview

- AWS has 3 pricing fundamentals, following the pay-as-you-go pricing model
- Compute:
 - Pay for compute time
- Storage:
 - Pay for data stored in the Cloud
- Data transfer OUT of the Cloud:
 - Data transfer IN is free
- Solves the expensive issue of traditional IT

AWS Cloud History

2002: Internally launched 2004: Launched publicly with SQS 2007: Launched in Europe

Dropbox

2003:

Amazon infrastructure is one of their core strength.

Idea to market

2006: Re-launched publicly with

SQS, S3 & EC2

AWS Cloud Number Facts

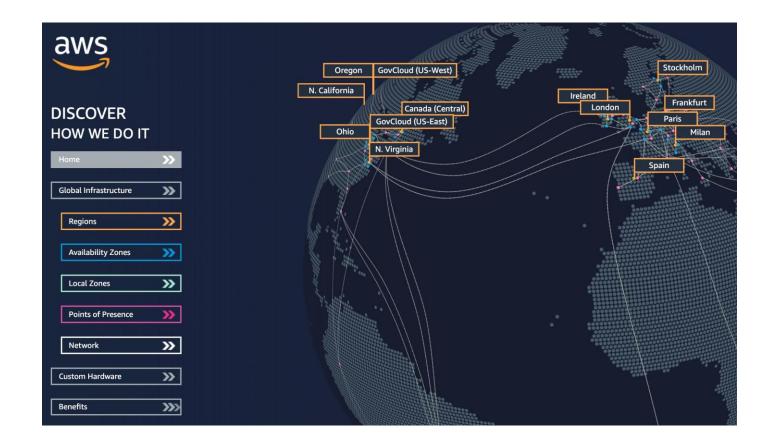
- In 2019, AWS had \$35.02 billion in annual revenue
- AWS accounts for 47% of the market in 2019 (Microsoft is 2nd with 22%)
- Pioneer and Leader of the AWS Cloud Market for the 9th consecutive year
- Over 1,000,000 active users

Figure 1. Magic Quadrant for Cloud Infrastructure as a Service, Worldwide

Gartner Magic Quadant

AWS Cloud Use Cases

- AWS enables you to build sophisticated, scalable applications
- Applicable to a diverse set of industries
- Use cases include
 - Enterprise IT, Backup & Storage, Big Data analytics
 - Website hosting, Mobile & Social Apps
 - Gaming



Global Infrastructure Section

AWS Global Infrastructure

- AWS Regions
- AWSAvailability Zones
- AWS Data Centers
- AWS Edge Locations / Points of Presence
- https://infrastructure.aws/

AWS Regions

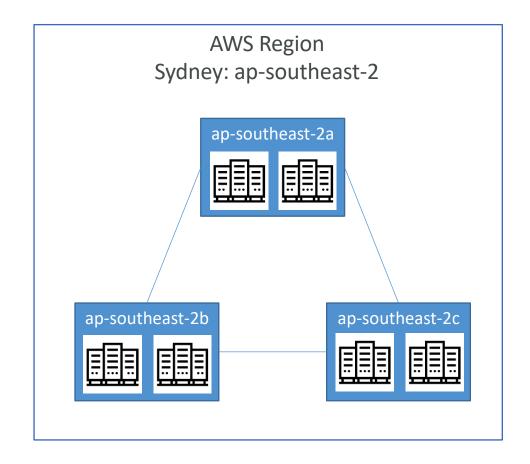
- AWS has Regions all around the world
- Names can be us-east-1, eu-west-3 ...
- A region is a cluster of data centers
- Most AWS services are region-scoped

https://aws.amazon.com/about-aws/global-infrastructure/

US East (N. Virginia) us-east-1 US East (Ohio) us-east-2 US West (N. California) us-west-1 US West (Oregon) us-west-2 Africa (Cape Town) af-south-1 Asia Pacific (Hong Kong) ap-east-1 Asia Pacific (Mumbai) ap-south-1 Asia Pacific (Seoul) ap-northeast-2 Asia Pacific (Singapore) ap-southeast-1 Asia Pacific (Sydney) ap-southeast-2 Asia Pacific (Tokyo) ap-northeast-1 Canada (Central) ca-central-1 Europe (Frankfurt) eu-central-1 Europe (Ireland) eu-west-1 Europe (London) eu-west-2 Europe (Paris) eu-west-3 Europe (Stockholm) eu-north-1 Middle East (Bahrain) me-south-1

South America (São Paulo) sa-east-1

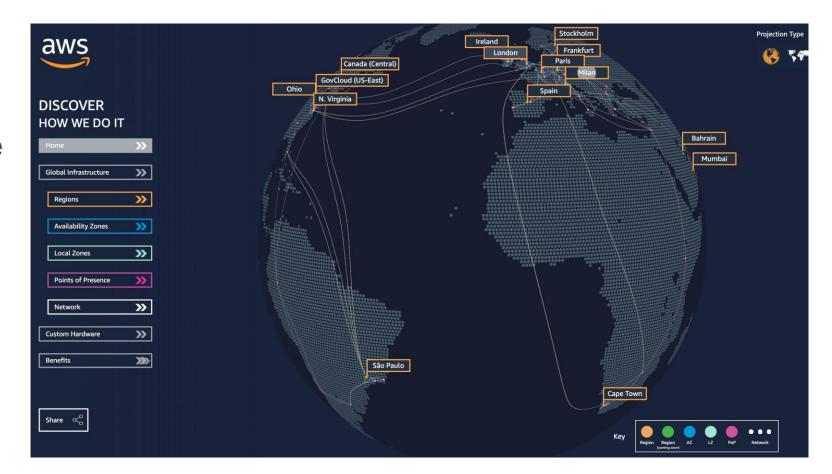
How to choose an AWSRegion?


If you need to launch a new application, where should you do it?

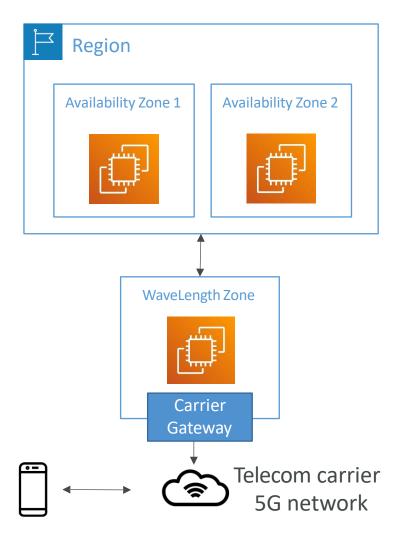
- Compliance with data governance and legal requirements: data never leaves a region without your explicit permission
- Proximity to customers reduced latency
- Available services within a Region: new services and new features aren't available in every Region
- Pricing: pricing varies region to region and is transparent in the service pricing page

AWSAvailability Zones

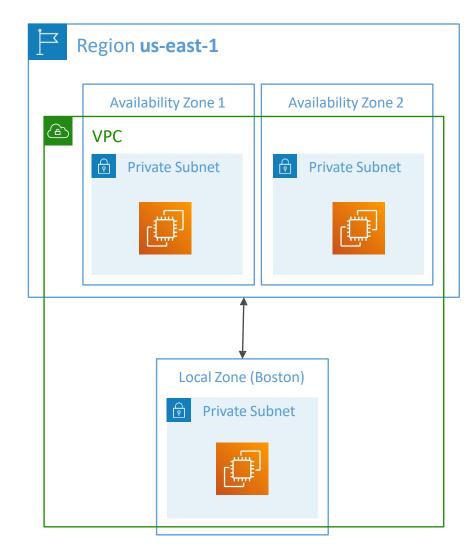
- Each region has many availability zones (usually 3, min is 2, max is 6). Example:
 - ap-southeast-2a
 - ap-southeast-2b
 - ap-southeast-2c
- Each availability zone (AZ) is one or more discrete data centers with redundant power, networking, and connectivity
- They're separate from each other, so that they're isolated from disasters
- They're connected with high bandwidth, ultra-low latency networking


AWS Points of Presence (Edge Locations)

- Amazon has 216 Points of Presence (205 Edge Locations & 11 Regional Caches) in 84 cities across 42 countries
- Content is delivered to end users with lower latency


Global AW SInfrastructure

- Regions: For deploying applications and infrastructure
- Availability Zones: Made of multiple data centers
- Edge Locations (Points of Presence): for content delivery as close as possible to users
- More at: https://infrastructure.aw s/


AW SW aveLength

- WaveLength Zones are infrastructure deployments embedded within the telecommunications providers' datacenters at the edge of the 5G networks
- Brings AWS services to the edge of the 5G networks
- Example: EC2, EBS, VPC...
- Ultra-low latency applications through 5G networks
- Traffic doesn't leave the Communication Service Provider's (CSP) network
- High-bandwidth and secure connection to the parent AWS Region
- No additional charges or service agreements
- Use cases: Smart Cities, ML-assisted diagnostics, Connected Vehicles, Interactive Live Video Streams, ARVR, Real-time Gaming, ...

AWS Local Zones

- Places AWS compute, storage, database, and other selected AWS services closer to end users to run latency-sensitive applications
- Extend your VPC to more locations -"Extension of an AWS Region"
- Compatible with EC2, RDS, ECS, EBS, EastiCache, Direct Connect ...
- Example:
 - AWS Region: N. Virginia (us-east-1)
 - AWS Local Zones: Boston, Chicago, Dallas, Houston, Miami, ...

Global Applications in AWS-Summary

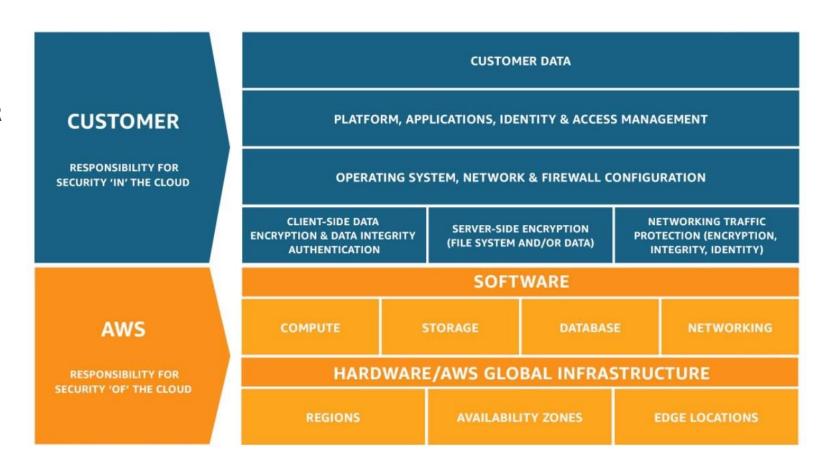
- AWS Outposts
 - Deploy Outposts Racks in your own Data Centers to extend AWS services

- AWSWaveLength
 - Brings AWS services to the edge of the 5G networks
 - Ultra-low latency applications

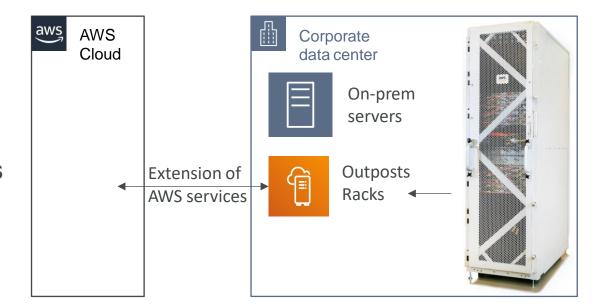
- AWS Local Zones
 - Bring AWS resources (compute, database, storage, ...) closer to your users
 - Good for latency-sensitive applications

Tour of the AWS Console

- AWS has Global Services:
 - Identity and Access Management (IAM)
 - Route 53 (DNS service)
 - CloudFront (Content Delivery Network)
 - WAF (Web Application Firewall)
- Most AWS services are Region-scoped:
 - Amazon EC2 (Infrastructure as a Service)
 - Elastic Beanstalk (Platform as a Service)
 - Lambda (Function as a Service)
 - Rekognition (Software as a Service)



Shared Responsibility Model diagram


CUSTOMER = RESPONSIBILITY FOR THE SECURITY **IN** THE CLOUD

AWS = RESPONSIBILITY FOR THE SECURITY **OF** THE CLOUD

AWS Outposts

- Hybrid Cloud: businesses that keep an onpremises infrastructure alongside acloud infrastructure
- Therefore, two ways of dealing with IT systems:
 - One for the AWS doud (using the AWS console, CLI, and AWSAPIs)
 - One for their on-premises infrastructure
- AWS Outposts are "server racks" that offers the same AWS infrastructure, services, APIs & tools to build your own applications on-premises just as in the cloud
- AWS will setup and manage "Outposts Racks" within your on-premises infrastructure and you can start leveraging AWS services on-premises
- You are responsible for the Outposts Rack physical security

AWS Outposts

- Benefits:
 - Low-latency access to on-premises systems
 - Local data processing
 - Data residency
 - Easier migration from on-premises to the doud
 - Fully managed service
- Some services that work on Outposts:

Amazon EBS

Amazon S3

Amazon EKS

Amazon ECS

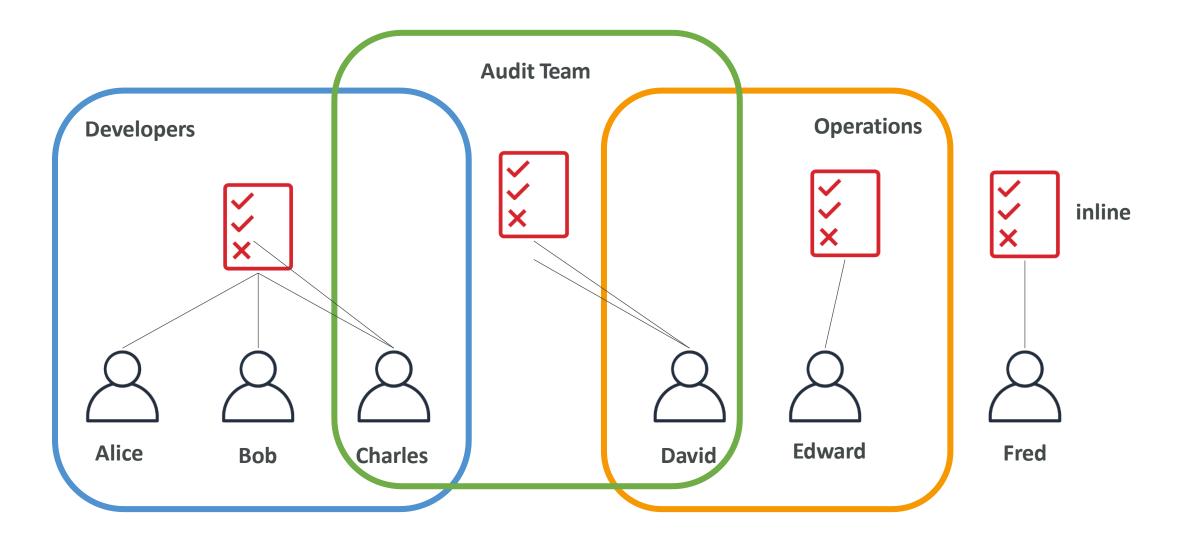
Amazon RDS

Amazon EMR

IAM Section

IAM: Users & Groups

- IAM = Identity and Access Management, Global service
- Root account created by default, shouldn't be used or shared
- Users are people within your organization, and can be grouped
- Groups only contain users, not other groups
- Users don't have to belong to a group, and user can belong to multiple groups



IAM: Permissions

- Users or Groups can be assigned JSON documents called policies
- These policies define the permissions of the users
- In AWS you apply the least privilege principle: don't give more permissions than a user needs

```
"Version": "2012-10-17",
"Statement": [
        "Effect": "Allow",
        "Action": "ec2:Describe*",
        "Resource": "*"
    },
        "Effect": "Allow",
        "Action":
        "elasticloadbalancing:Describe*",
        "Resource": "*"
   },
        "Effect": "Allow",
        "Action":
            "cloudwatch:ListMetrics",
            "cloudwatch:GetMetricStatistics",
            "cloudwatch:Describe*"
        "Resource": "*"
    }
]
```

IAM Policies inheritance

IAM Policies Structure

Consists of

- Version: policy language version, always include "2012-10-17"
- Id: an identifier for the policy (optional)
- Statement: one or more individual statements (required)
- Statements consists of
 - Sid: an identifier for the statement (optional)
 - Effect: whether the statement allows or denies access (Allow, Deny)
 - Principal: account/user/role to which this policy applied to
 - · Action: list of actions this policy allows or denies
 - Resource: list of resources to which the actions applied to
 - Condition: conditions for when this policy is in effect (optional)

IAM – Password Policy

- Strong passwords = higher security for your account
- In AWS, you can setup a password policy:
 - Set a minimum password length
 - Require specific character types:
 - including uppercase letters
 - lowercase letters
 - numbers
 - non-alphanumeric characters
 - Allow all IAM users to change their own passwords
 - Require users to change their password after some time (password expiration)
 - Prevent password re-use

Multi Factor Authentication - MFA

Alice

- Users have access to your account and can possibly change configurations or delete resources in your AWS account
- You want to protect your Root Accounts and IAM users
- MFA = password you know + security device you own

 Password + MFA => Successful login

Main benefit of MFA:
 if a password is stolen or hacked, the account is not compromised

MFA devices options in AWS

Virtual MFA device

Authy (multi-device)

Support for multiple tokens on a single device.

Universal 2nd Factor (U2F) Security Key

YubiKey by Yubico (3rd party)

Support for multiple root and IAM users using a single security key

MFA devices options in AWS

Hardware Key Fob MFA Device

Provided by Gemalto (3rd party)

Hardware Key Fob MFA Device for AWS GovCloud (US)

Provided by SurePassID (3rd party)

How can users access AWS?

- To access AWS, you have three options:
 - AWS Management Console (protected by password + MFA)
 - AWS Command Line Interface (CLI): protected by access keys
 - AWS Software Developer Kit (SDK) for code: protected by access keys
- Access Keys are generated through the AWS Console
- Users manage their own access keys
- Access Keys are secret, just like a password. Don't share them
- Access Key ID ~= username
- Secret Access Key ~= password

Example (Fake) Access Keys

Access keys

Use access keys to make secure REST or HTTP Query protocol requests to AWS service APIs. For your protection, you should never share your secret keys with anyone. As a best practice, we recommend frequent key rotation. Learn more

Create access key

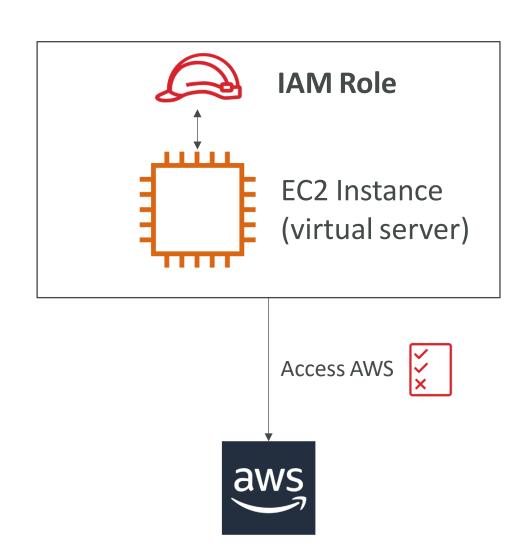
Access key ID	Created	Last used	Status		
AKIASK4E37PV4TU3RD6C	2020-05-25 15:13 UTC+0100	N/A	Active	Make inactive	×

- Access key ID: AKIASK4E37PV4983d6C
- Secret Access Key: AZPN3zojWozWCndljhB0Unh8239a1bzbzO5fqqkZq
- Remember: don't share your access keys

What's the AWS CLI?

- A tool that enables you to interact with AWS services using commands in your command-line shell
- Direct access to the public APIs of AWS services
- You can develop scripts to manage your resources
- It's open-source https://github.com/aws/aws-cli
- Alternative to using AWS Management Console

What's the AWS SDK?


- AWS Software Development Kit (AWS SDK)
- Language-specific APIs (set of libraries)
- Enables you to access and manage AWS services programmatically
- Embedded within your application
- Supports
 - SDKs (JavaScript, Python, PHP, .NET, Ruby, Java, Go, Node.js, C++)
 - Mobile SDKs (Android, iOS, ...)
 - IoT Device SDKs (Embedded C, Arduino, ...)
- Example: AWSCLI is built on AWSSDK for Python

Your Application

IAM Roles for Services

- Some AWS service will need to perform actions on your behalf
- To do so, we will assign permissions to AWS services with IAM Roles
- Common roles:
 - EC2 Instance Roles
 - Lambda Function Roles
 - Roles for CloudFormation

IAM Security Tools

- IAM Credentials Report (account-level)
 - areport that lists all your account's users and the status of their various credentials
- IAM Access Advisor (user-level)
 - Access advisor shows the service permissions granted to auser and when those services were last accessed.
 - You can use this information to revise your policies.

IAM Guidelines & Best Practices

- Don't use the root account except for AWS account setup
- One physical user = One AWS user
- Assign users to groups and assign permissions to groups
- Create a strong password policy
- Use and enforce the use of Multi Factor Authentication (MFA)
- Create and use Roles for giving permissions to AWS services
- Use Access Keys for Programmatic Access (CLI / SDK)
- Audit permissions of your account with the IAM Credentials Report
- Never share IAM users & Access Keys

Shared Responsibility Model for IAM

- Infrastructure (global network security)
- Configuration and vulnerability analysis
- Compliance validation

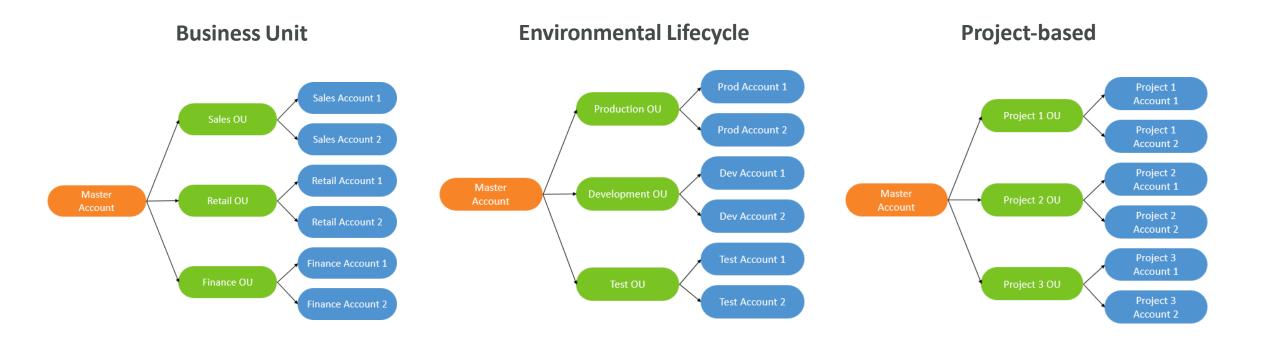
- Users, Groups, Roles, Policies management and monitoring
- Enable MFA on all accounts
- Rotate all your keys often
- Use IAM tools to apply appropriate permissions
- Analyze access patterns & review permissions

IAM Section – Summary

- Users: mapped to a physical user, has a password for AWS Console
- Groups: contains users only
- Policies: JSON document that outlines permissions for users or groups
- Roles: for EC2 instances or AWS services
- Security: MFA + Password Policy
- AWS CLI: manage your AWS services using the command-line
- AWS SDK: manage your AWS services using a programming language
- Access Keys: access AWS using the CLI or SDK
- Audit: IAM Credential Reports & IAM Access Advisor

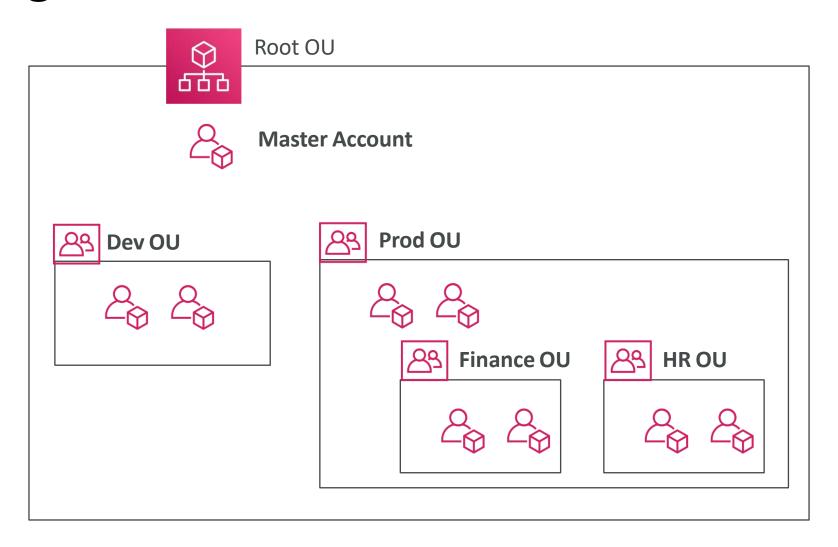
Account Management Section

AWS Organizations



- Global service
- Allows to manage multiple AWS accounts
- The main account is the master account
- Cost Benefits:
 - Consolidated Billing across all accounts single payment method
 - Pricing benefits from aggregated usage (volume discount for EC2, S3...)
 - Pooling of Reserved EC2 instances for optimal savings
- API is available to automate AWS account creation
- Restrict account privileges using Service Control Policies (SCP)

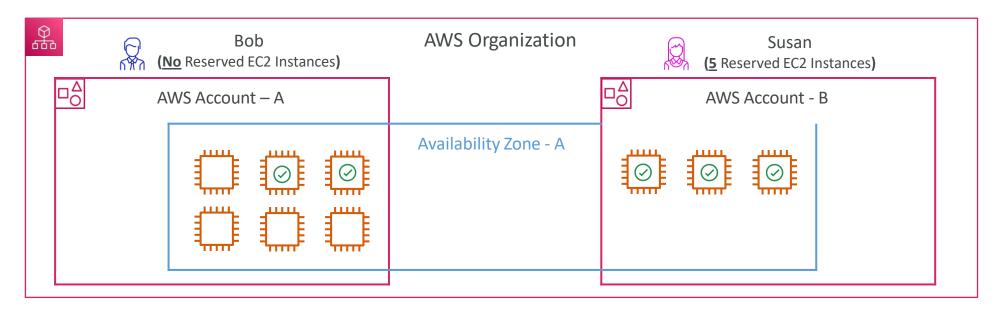
Multi Account Strategies


- Create accounts per department, per cost center, per dev / test / prod, based on regulatory restrictions (using SCP), for better resource isolation (ex:VPC), to have separate per-account service limits, isolated account for logging
- Multi Account vs One Account Multi VPC
- Use tagging standards for billing purposes
- Enable CloudTrail on all accounts, send logs to central S3 account
- Send CloudWatch Logs to central logging account

Organizational Units (OU) - Examples

https://aws.amazon.com/answers/account-management/aws-multi-account-billing-strategy/

AWS Organization



Service Control Policies (SCP)

- Whitelist or blacklist IAM actions
- Applied at the OU or Account level
- Does not apply to the Master Account
- SCP is applied to all the Users and Roles of the Account, including Root user
- The SCP does not affect service-linked roles
 - Service-linked roles enable other AWS services to integrate with AWS Organizations and can't be restricted by SCPs.
- SCPmust have an explicit Allow (does not allow anything by default)
- Use cases:
 - Restrict access to certain services (for example: can't use EMR)
 - Enforce PCI compliance by explicitly disabling services

AWS Organization - Consolidated Billing

- When enabled, provides you with:
 - Combined Usage combine the usage across all AWS accounts in the AWS Organization to share the volume pricing, Reserved Instances and Savings Plans discounts
 - One Bill get one bill for all AWS Accounts in the AWS Organization
- The management account can turn off Reserved Instances discount sharing for any account in the AWS Organization, including itself

EC2 Section

Amazon EC2

- EC2 is one of the most popular of AWS offering
- EC2 = Bastic Compute Cloud = Infrastructure as a Service
- It mainly consists in the capability of :
 - Renting virtual machines (EC2)
 - Storing data on virtual drives (EBS)
 - Distributing load across machines (ELB)
 - Scaling the services using an auto-scaling group (ASG)
- Knowing EC2 is fundamental to understand how the Cloud works

EC2 sizing & configuration options

- Operating System (OS): Linux, Windows or Mac OS
- How much compute power & cores (CPU)
- How much random-access memory (RAM)
- How much storage space:
 - Network-attached (⊞S & ⊞S)
 - hardware (EC2 Instance Store)
- Network card: speed of the card, Public IP address
- Firewall rules: security group
- Bootstrap script (configure at first launch): EC2 User Data

EC2 User Data

- It is possible to bootstrap our instances using an EC2 User data script.
- bootstrapping means launching commands when a machine starts
- That script is only run once at the instance first start
- EC2 user data is used to automate boot tasks such as:
 - Installing updates
 - Installing software
 - Downloading common files from the internet
 - Anything you can think of
- The EC2 User Data Script runs with the root user

EC2 Instance Types - Overview

- You can use different types of EC2 instances that are optimised for different use cases (https://aws.amazon.com/ec2/instance-types/)
- AWS has the following naming convention:

m5.2xlarge

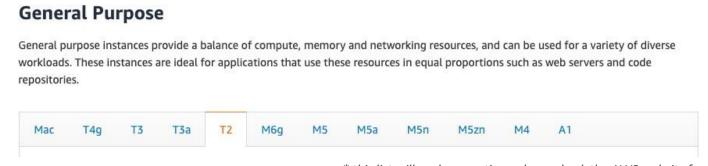
- m: instance dass
- 5: generation (AWS improves them over time)
- 2xlarge: size within the instance class

General Purpose

Compute Optimized

Memory Optimized

Accelerated Computing

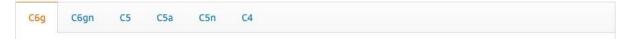

Storage Optimized

Instance Features

Measuring Instance Performance

EC2 InstanceTypes - General Purpose

- · Great for adiversity of workloads such as web servers or code repositories
- Balance between:
 - Compute
 - Memory
 - Networking
- In the course, we will be using the t2.micro which is a General Purpose EC2 instance

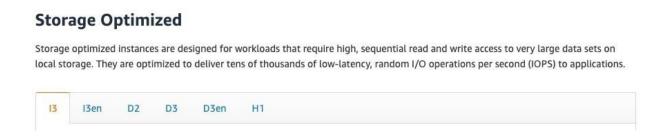


EC2 Instance Types - Compute Optimized

- Great for compute-intensive tasks that require high performance processors:
 - Batch processing workloads
 - Media transcoding
 - High performance web servers
 - High performance computing (HPC)
 - Scientific modeling & machine learning
 - Dedicated gaming servers

Compute Optimized

Compute Optimized instances are ideal for compute bound applications that benefit from high performance processors. Instances belonging to this family are well suited for batch processing workloads, media transcoding, high performance web servers, high performance computing (HPC), scientific modeling, dedicated gaming servers and ad server engines, machine learning inference and other compute intensive applications.

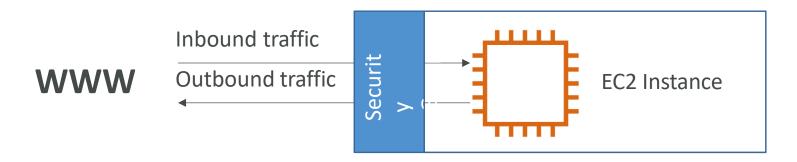

EC2 InstanceTypes - Memory Optimized

- Fast performance for workloads that process large data sets in memory
- Use cases:
 - High performance, relational/non-relational databases
 - · Distributed web scale cache stores
 - In-memory databases optimized for BI (business intelligence)
 - · Applications performing real-time processing of big unstructured data

EC2 Instance Types - Storage Optimized

- Great for storage-intensive tasks that require high, sequential read and write access to large data sets on local storage
- Use cases:
 - High frequency online transaction processing (OLTP) systems
 - Relational & NoSQL databases
 - · Cache for in-memory databases (for example, Redis)
 - Data warehousing applications
 - Distributed file systems

EC2 Instance Types: example

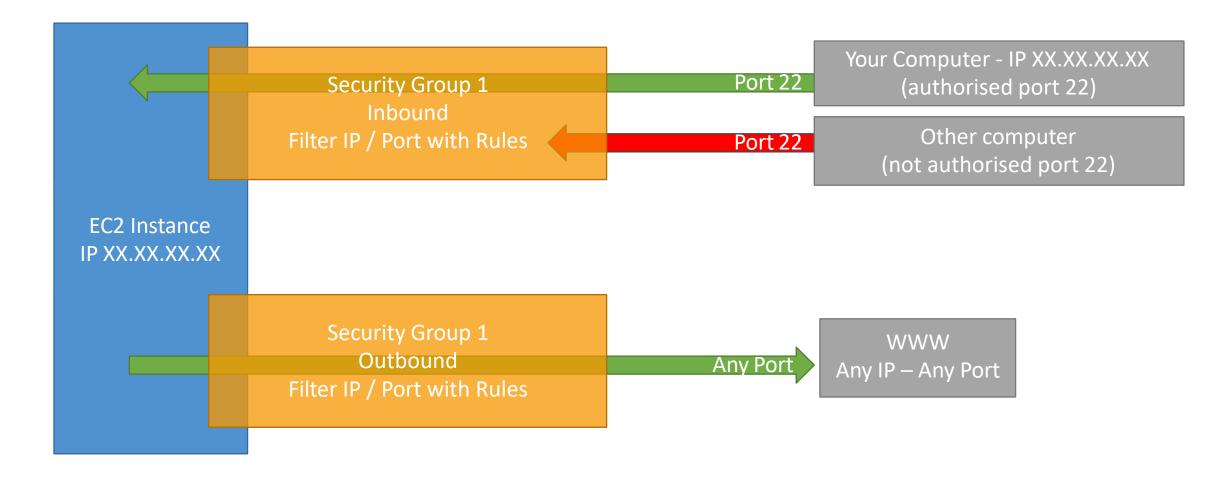

Instance	vCPU	Mem (GiB)	Storage	Network Performance	EBS Bandwidth (Mbps)
t2.micro	1	1	EBS-Only	Low to Moderate	
t2.xlarge	4	16	EBS-Only	Moderate	
c5d.4xlarge	16	32	1 x 400 NVMe SSD	Up to 10 Gbps	4,750
r5.16xlarge	64	512	EBS Only	20 Gbps	13,600
m5.8xlarge	32	128	EBS Only	10 Gbps	6,800

t2.micro is part of the AWS free tier (up to 750 hours per month)

Great website: https://instances.vantage.sh

Introduction to Security Groups

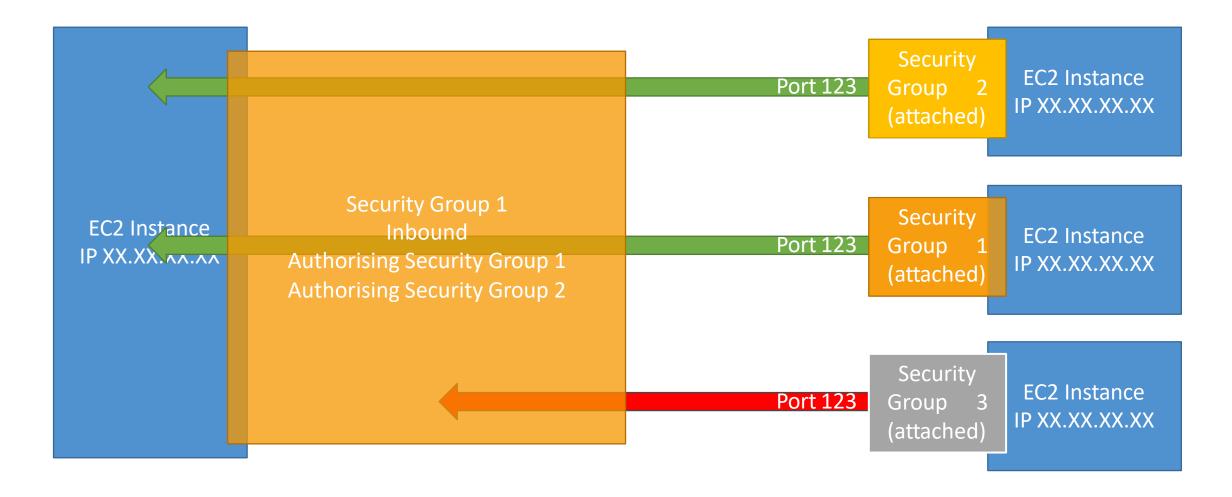
- Security Groups are the fundamental of network security in AWS
- They control how traffic is allowed into or out of our EC2 Instances.


- Security groups only contain allow rules
- Security groups rules can reference by IP or by security group

Security Groups Deeper Dive

- Security groups are acting as a "firewall" on EC2 instances
- They regulate:
 - Access to Ports
 - Authorised IP ranges IPv4 and IPv6
 - Control of inbound network (from other to the instance)
 - Control of outbound network (from the instance to other)

Type (i)	Protocol (i)	Port Range (i)	Source (i)	Description (i)
НТТР	TCP	80	0.0.0.0/0	test http page
SSH	TCP	22	122.149.196.85/32	
Custom TCP Rule	TCP	4567	0.0.0.0/0	java app


Security Groups Diagram

Security Groups Good to know

- Can be attached to multiple instances
- Locked down to a region / VPC combination
- Does live "outside" the EC2 if traffic is blocked the EC2 instance won't see it
- It's good to maintain one separate security group for SSHaccess
- If your application is not accessible (time out), then it's a security group issue
- If your application gives a "connection refused" error, then it's an application error or it's not launched
- All inbound traffic is blocked by default
- All outbound traffic is authorised by default

Referencing other security groups Diagram

Classic Ports to know

- 22 = SSH(Secure Shell) log into a Linux instance
- 21 = FTP (File Transfer Protocol) upload files into a file share
- 22 = SFTP (Secure File Transfer Protocol) upload files using SSH
- 80 = HTTP access unsecured websites
- 443 = HTTPS access secured websites
- 3389 = RDP (Remote Desktop Protocol) log into a Windows instance

EC2 Instances Purchasing Options

- On-Demand Instances short workload, predictable pricing, pay by second
- Reserved (1 & 3 years)
 - Reserved Instances long workloads
 - Convertible Reserved Instances long workloads with flexible instances
- Savings Plans (1 & 3 years) -commitment to an amount of usage, long workload
- Spot Instances short workloads, cheap, can lose instances (less reliable)
- Dedicated Hosts book an entire physical server, control instance placement
- Dedicated Instances no other customers will share your hardware
- Capacity Reservations reserve capacity in aspecific AZ for any duration

EC2 On Demand

- Pay for what you use:
 - · Linux or Windows billing per second, after the first minute
 - All other operating systems billing per hour
- Has the highest cost but no upfront payment
- No long-term commitment
- Recommended for short-term and un-interrupted workloads, where you can't predict how the application will behave

EC2 Reserved Instances

- Up to 72% discount compared to On-demand
- You reserve a specific instance attributes (Instance Type, Region, Tenancy, OS)
- Reservation Period 1 year (+discount) or 3 years (+++discount)
- Payment Options No Upfront (+), Partial Upfront (++), All Upfront (+++)
- Reserved Instance's Scope Regional or Zonal (reserve capacity in an AZ)
- Recommended for steady-state usage applications (think database)
- You can buy and sell in the Reserved Instance Marketplace
- Convertible Reserved Instance
 - Can change the EC2 instance type, instance family, OS, scope and tenancy
 - Up to 66% discount

Note: the % discounts are different from the video as AWS change them over time – the exact numbers are not needed for the exam. This is just for illustrative purposes ©

EC2 Savings Plans

- Get a discount based on long-term usage (up to 72% same as RIs)
- Commit to a certain type of usage (\$10/hour for 1 or 3 years)
- Usage beyond EC2 Savings Plans is billed at the On-Demand price
- Locked to a specific instance family & AWS region (e.g., M5 in us-east-1)
- Flexible across:
 - Instance Size (e.g., m5.xlarge, m5.2xlarge)
 - OS (e.g., Linux, Windows)
 - Tenancy (Host, Dedicated, Default)

EC2 Spot Instances

- Can get a discount of up to 90% compared to On-demand
- Instances that you can "lose" at any point of time if your max price is less than the current spot price
- The MOST cost-efficient instances in AWS
- Useful for workloads that are resilient to failure
 - Batch jobs
 - Data analysis
 - Image processing
 - Any distributed workloads
 - · Workloads with a flexible start and end time
- Not suitable for critical jobs or databases

EC2 Dedicated Hosts

- A physical server with EC2 instance capacity fully dedicated to your use
- Allows you address compliance requirements and use your existing server-bound software licenses (per-socket, per-core, pe-VM software licenses)
- Purchasing Options:
 - On-demand pay per second for active Dedicated Host
 - Reserved 1 or 3 years (No Upfront, Partial Upfront, All Upfront)
- The most expensive option
- Useful for software that have complicated licensing model (BYOL Bring Your Own License)
- Or for companies that have strong regulatory or compliance needs

EC2 Dedicated Instances

- Instances run on hardware that's dedicated to you
- May share hardware with other instances in same account
- No control over instance placement (can move hardware after Stop / Start)

Characteristic	Dedicated Instances	Dedicated Hosts
Enables the use of dedicated physical servers	X	Х
Per instance billing (subject to a \$2 per region fee)	X	
Per host billing		Х
Visibility of sockets, cores, host ID		Х
Affinity between a host and instance		Х
Targeted instance placement		Х
Automatic instance placement	X	Х
Add capacity using an allocation request		Х

EC2 Capacity Reservations

- Reserve On-Demand instances capacity in a specific AZ for any duration
- You always have access to EC2 capacity when you need it
- No time commitment (create/cancel anytime), no billing discounts
- Combine with Regional Reserved Instances and Savings Plans to benefit from billing discounts
- You're charged at On-Demand rate whether you run instances or not
- Suitable for short-term, uninterrupted workloads that needs to be in a specific AZ

Shared Responsibility Model for EC2

- Infrastructure (global network security)
- Isolation on physical hosts
- Replacing faulty hardware
- Compliance validation

- Security Groups rules
- Operating-system patches and updates
- Software and utilities installed on the EC2 instance
- IAM Roles assigned to EC2 & IAM user access management
- Data security on your instance

AWS Marketplace

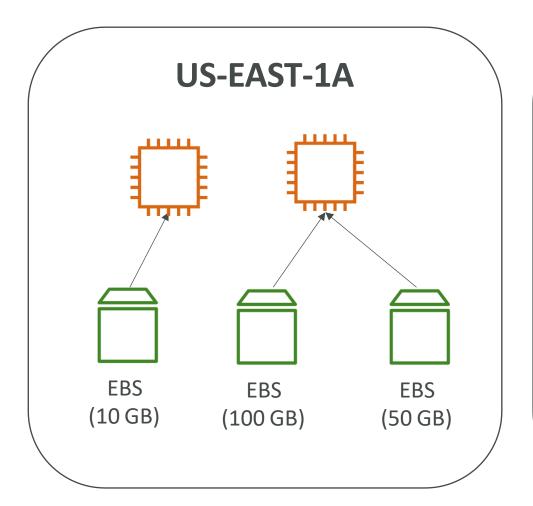
- Digital catalog with thousands of software listings from independent software vendors (3rd party)
- Example:
 - Custom AMI (custom OS, firewalls, technical solutions...)
 - CloudFormation templates
 - Software as a Service
 - Containers
- If you buy through the AWS Marketplace, it goes into your AWS bill
- You can sell your own solutions on the AWS Marketplace

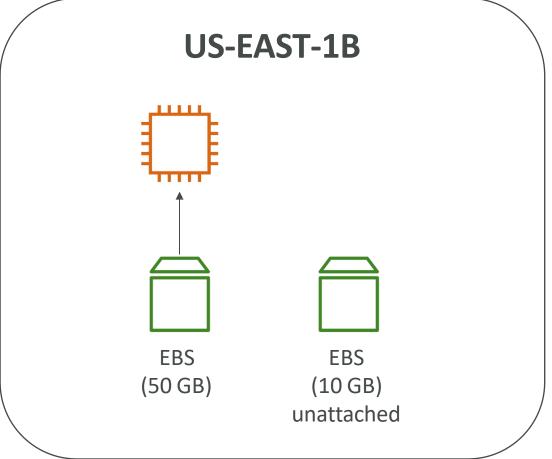
EC2 Section - Summary

- EC2 Instance: AMI (OS) + Instance Size (CPU + RAM) + Storage + security groups + EC2 User Data
- Security Groups: Firewall attached to the EC2 instance
- EC2 User Data: Script launched at the first start of an instance
- SSH: start aterminal into our EC2 Instances (port 22)
- EC2 Instance Role: link to IAM roles
- Purchasing Options: On-Demand, Spot, Reserved (Standard + Convertible + Scheduled), Dedicated Host, Dedicated Instance

EC2 Instance Storage Section

What's an EBSVolume?

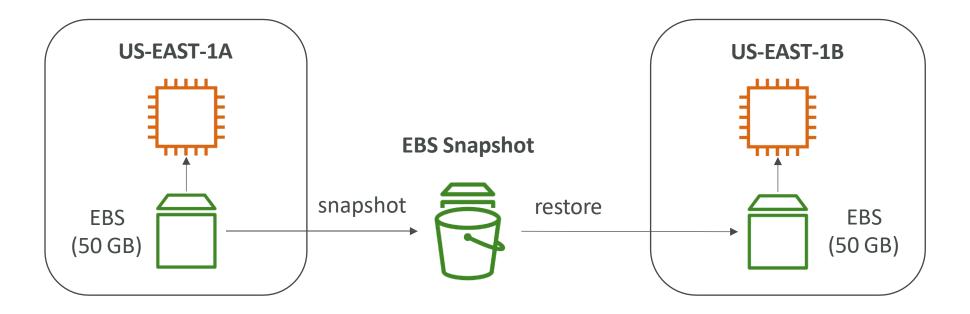



- An EBS(Elastic Block Store) Volume is a network drive you can attach to your instances while they run
- It allows your instances to persist data, even after their termination
- They can only be mounted to one instance at a time (at the CCP level)
- They are bound to a specific availability zone
- Analogy: Think of them as a "network USB stick"
- Free tier: 30 GB of free EBSstorage of type General Purpose (SSD) or Magnetic per month

EBSVolume


- It's anetwork drive (i.e. not aphysical drive)
 - It uses the network to communicate the instance, which means there might be abit of latency
 - It can be detached from an EC2 instance and attached to another one quickly
- It's locked to an Availability Zone (AZ)
 - An ESVolume in us-east-1a cannot be attached to us-east-1b
 - · To move avolume across, you first need to snapshot it
- Have a provisioned capacity (size in GBs, and IOPS)
 - · You get billed for all the provisioned capacity
 - You can increase the capacity of the drive over time

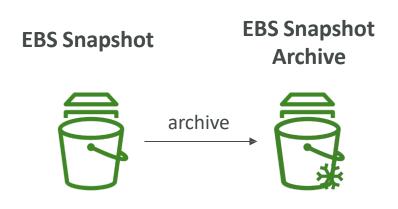
EBSVolume - Example

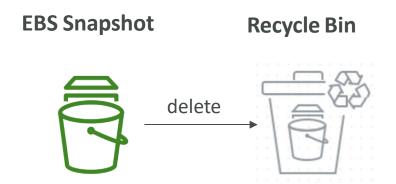

EBS- Delete on Termination attribute

- Controls the EBSbehaviour when an EC2 instance terminates
 - By default, the root BS volume is deleted (attribute enabled)
 - By default, any other attached ES volume is not deleted (attribute disabled)
- This can be controlled by the AWS console / AWS CLI
- Use case: preserve root volume when instance is terminated

EBS Snapshots

- Make a backup (snapshot) of your EBS volume at a point in time
- Not necessary to detach volume to do snapshot, but recommended
- Can copy snapshots across AZ or Region

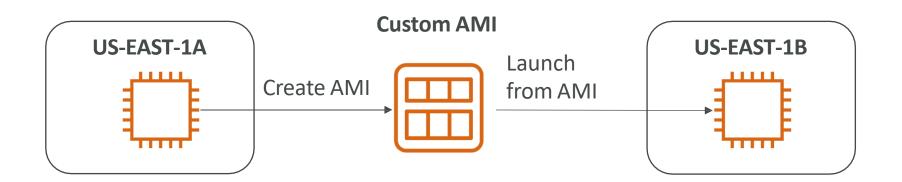

EBS Snapshots Features

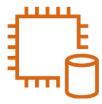

EBS Snapshot Archive

- Move a Snapshot to an "archive tier" that is 75% cheaper
- Takes within 24 to 72 hours for restoring the archive

Recycle Bin for EBS Snapshots

- Setup rules to retain deleted snapshots so you can recover them after an accidental deletion
- Specify retention (from 1 day to 1 year)

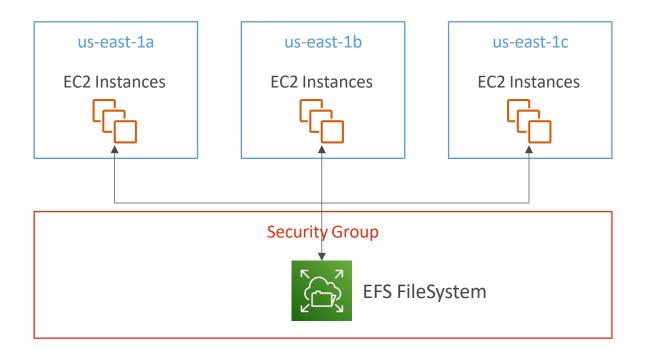

AMI Overview


- AMI = Amazon Machine Image
- AMI are a customization of an EC2 instance
 - You add your own software, configuration, operating system, monitoring...
 - Faster boot / configuration time because all your software is pre-packaged
- AMI are built for aspecific region (and can be copied across regions)
- You can launch EC2 instances from:
 - A Public AMI: AWS provided
 - Your own AMI: you make and maintain them yourself
 - An AWS Marketplace AMI: an AMI someone else made (and potentially sells)

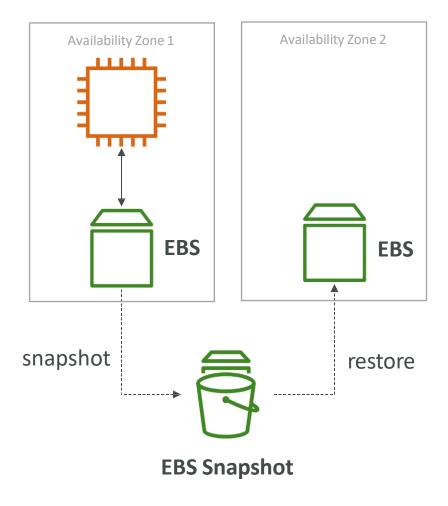
AMI Process (from an EC2 instance)

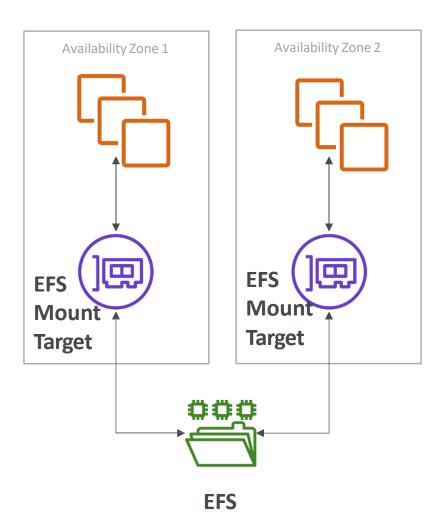
- Start an EC2 instance and customize it
- Stop the instance (for data integrity)
- Build an AMI this will also create EBS snapshots
- Launch instances from other AMIs

EC2 Instance Store



- ESvolumes are network drives with good but "limited" performance
- If you need a high-performance hardware disk, use EC2 Instance Store
- Better I/O performance
- EC2 Instance Store lose their storage if they're stopped (ephemeral)
- Good for buffer / cache / scratch data / temporary content
- Risk of data loss if hardware fails
- Backups and Replication are your responsibility


EFS – Elastic File System



- Managed NFS (network file system) that can be mounted on 100s of EC2
- EFS works with Linux EC2 instances in multi-AZ
- Highly available, scalable, expensive (3x gp2), pay per use, no capacity planning

EBS vs EFS

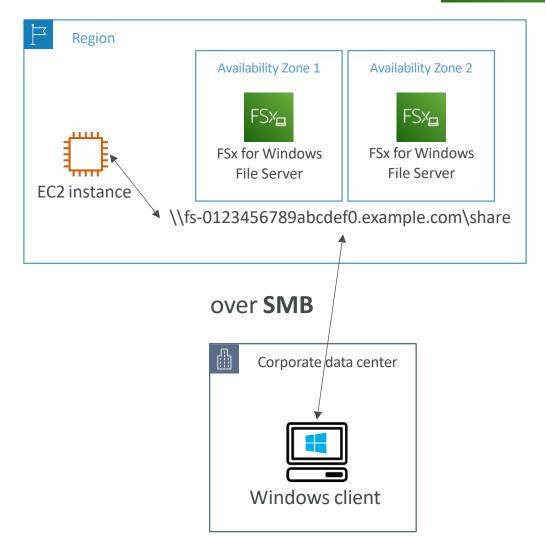
Shared Responsibility Model for EC2 Storage

- Infrastructure
- Replication for data for ⊞S volumes & ⊞S drives
- Replacing faulty hardware
- Ensuring their employees cannot access your data

- Setting up backup / snapshot procedures
- Setting up data encryption
- Responsibility of any data on the drives
- Understanding the risk of using EC2 Instance Store

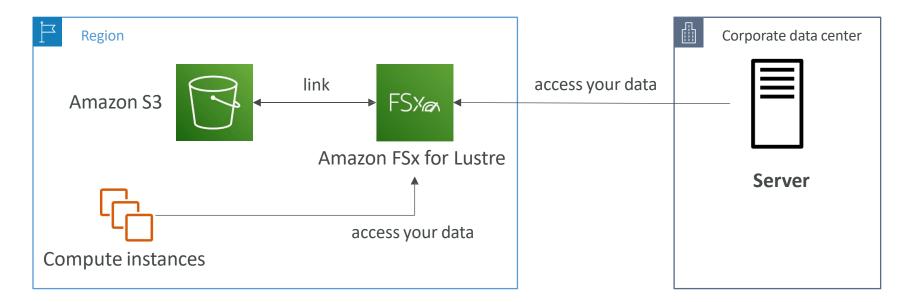
Amazon FSx – Overview

- Launch 3rd party high-performance file systems on AWS
- Fully managed service


FSXD
FSx for
Windows File
Server

FSX for NetApp ONTAP

Amazon FSx for Windows File Server

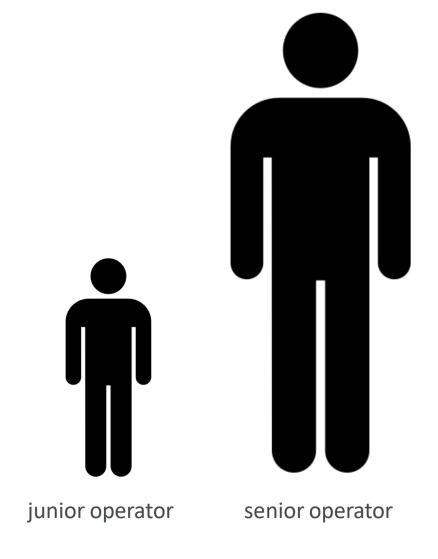

- A fully managed, highly reliable, and scalable Windows native shared file system
- Built on Windows File Server
- Supports SMB protocol & Windows NTFS
- Integrated with Microsoft Active Directory
- Can be accessed from AWS or your on-premise infrastructure

Amazon FSx for Lustre

- A fully managed, high-performance, scalable file storage for High Performance Computing (HPC)
- The name Lustre is derived from "Linux" and "cluster"
- Machine Learning, Analytics, Video Processing, Financial Modeling, ...
- Scales up to 100s GB/s, millions of IOPS, sub-ms latencies

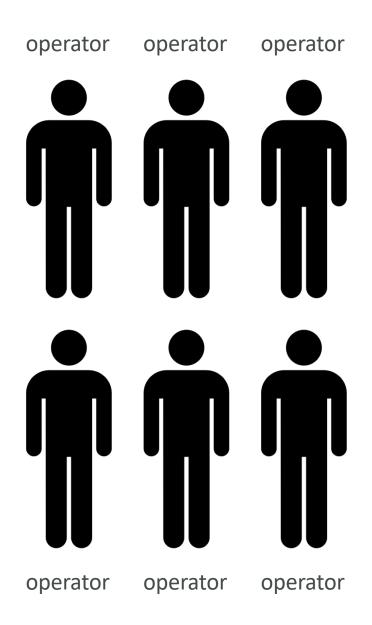
EC2 Instance Storage - Summary

- EBS volumes:
 - · network drives attached to one EC2 instance at a time
 - Mapped to an Availability Zones
 - Can use BSSnapshots for backups / transferring BSvolumes across AZ
- AMI: create ready-to-use EC2 instances with our customizations
- EC2 Image Builder: automatically build, test and distribute AMIs
- EC2 Instance Store:
 - High performance hardware disk attached to our EC2 instance
 - Lost if our instance is stopped / terminated
- EFS: network file system, can be attached to 100s of instances in a region
- EFS-IA: cost-optimized storage class for infrequent accessed files
- FSx for Windows: Network File System for Windows servers
- FSx for Lustre: High Performance Computing Linux file system

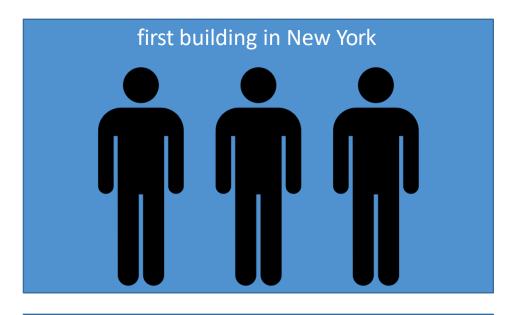

Elastic Load Balancing & Auto Scaling Groups Section

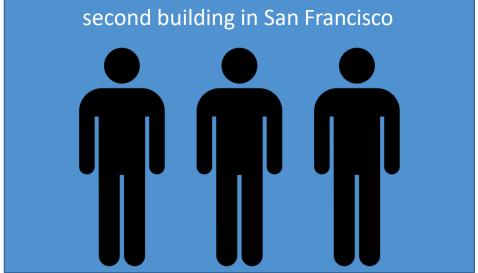
Scalability & High Availability

- Scalability means that an application / system can handle greater loads by adapting.
- There are two kinds of scalability:
 - Vertical Scalability
 - Horizontal Scalability (= elasticity)
- Scalability is linked but different to High Availability
- Let's deep dive into the distinction, using a call center as an example


Vertical Scalability

- Vertical Scalability means increasing the size of the instance
- For example, your application runs on a t2.micro
- Scaling that application vertically means running it on a t2.large
- Vertical scalability is very common for non distributed systems, such as a database.
- There's usually a limit to how much you can vertically scale (hardware limit)


Horizontal Scalability


- Horizontal Scalability means increasing the number of instances / systems for your application
- Horizontal scaling implies distributed systems.
- This is very common for web applications / modern applications
- It's easy to horizontally scale thanks the cloud offerings such as Amazon EC2

High Availability

- High Availability usually goes hand in hand with horizontal scaling
- High availability means running your application / system in at least 2 Availability Zones
- The goal of high availability is to survive a data center loss (disaster)

High Availability & Scalability For EC2

- Vertical Scaling: Increase instance size (= scale up / down)
 - From: t2.nano 0.5G of RAM, 1 vCPU
 - To: u-12tb1.metal 12.3 TB of RAM, 448 vCPUs
- Horizontal Scaling: Increase number of instances (= scale out / in)
 - Auto Scaling Group
 - Load Balancer
- High Availability: Run instances for the same application across multi AZ
 - Auto Scaling Group multi AZ
 - Load Balancer multi AZ


Scalability vs Elasticity (vs Agility)

- Scalability: ability to accommodate a larger load by making the hardware stronger (scale up), or by adding nodes (scale out)
- Elasticity: once a system is scalable, elasticity means that there will be some "auto-scaling" so that the system can scale based on the load. This is "cloud-friendly": pay-per-use, match demand, optimize costs
- Agility: (not related to scalability distractor) new IT resources are only aclick away, which means that you reduce the time to make those resources available to your developers from weeks to just minutes.

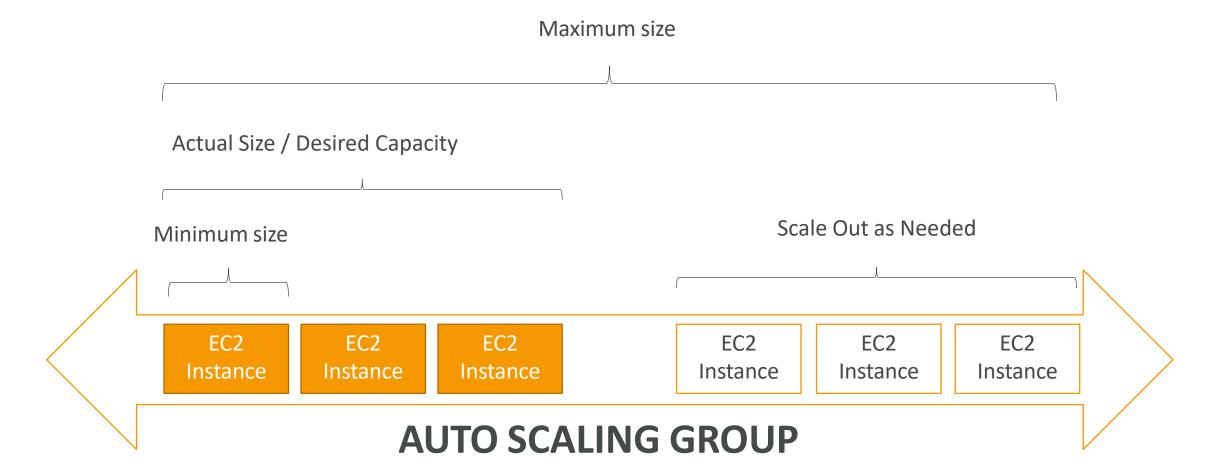
What is load balancing?

• Load balancers are servers that forward internet traffic to multiple servers (EC2 Instances) downstream.

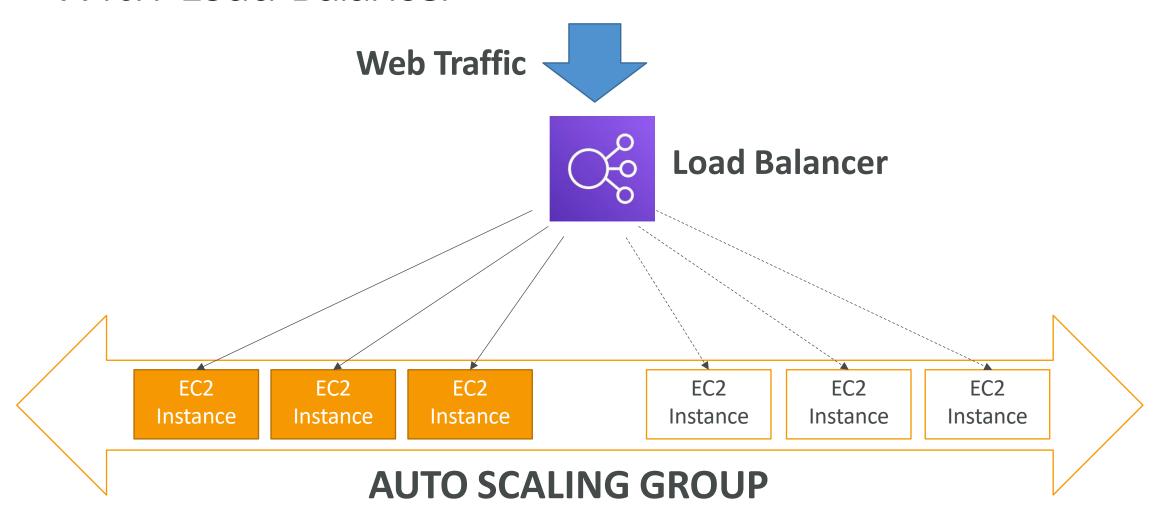
Why use a load balancer?

- Spread load across multiple downstream instances
- Expose a single point of access (DNS) to your application
- Seamlessly handle failures of downstream instances
- Do regular health checks to your instances
- Provide SSL termination (HTTPS) for your websites
- High availability across zones

Why use an Elastic Load Balancer?


- An ELB(Elastic Load Balancer) is a managed load balancer
 - AWS guarantees that it will be working
 - · AWS takes care of upgrades, maintenance, high availability
 - AWS provides only a few configuration knobs
- It costs less to setup your own load balancer but it will be a lot more effort on your end (maintenance, integrations)
- 3 kinds of load balancers offered by AWS
 - Application Load Balancer (HTTP / HTTPS only) Layer 7
 - Network Load Balancer (ultra-high performance, allows for TCP) Layer 4
 - Classic Load Balancer (slowly retiring) Layer 4 & 7

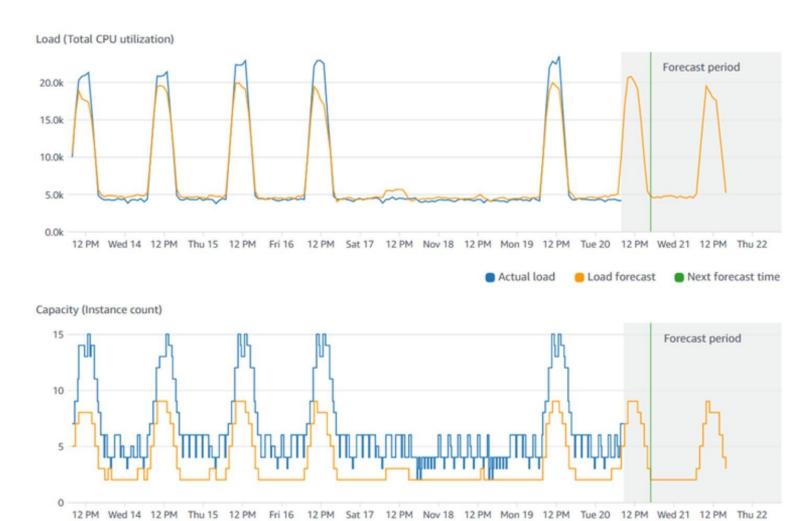
What's an Auto Scaling Group?



- In real-life, the load on your websites and application can change
- In the cloud, you can create and get rid of servers very quickly
- The goal of an Auto Scaling Group (ASG) is to:
 - · Scale out (add EC2 instances) to match an increased load
 - Scale in (remove EC2 instances) to match adecreased load
 - Ensure we have a minimum and a maximum number of machines running
 - · Automatically register new instances to a load balancer
 - Replace unhealthy instances
- Cost Savings: only run at an optimal capacity (principle of the cloud)

Auto Scaling Group in AWS

Auto Scaling Group in AWS With Load Balancer



Auto Scaling Groups - Scaling Strategies

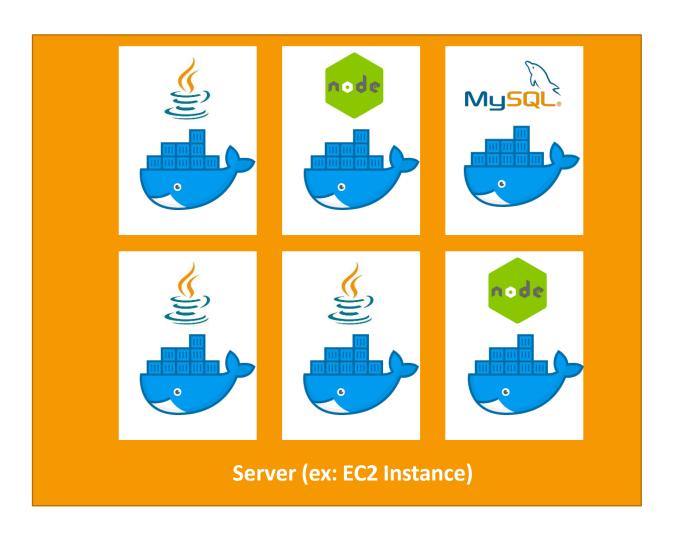
- Manual Scaling: Update the size of an ASG manually
- Dynamic Scaling: Respond to changing demand
 - Simple / Step Scaling
 - When a CloudWatch alarm is triggered (example CPU > 70%), then add 2 units
 - When a CloudWatch alarm is triggered (example CPU < 30%), then remove 1
 - Target Tracking Scaling
 - Example: I want the average ASG CPU to stay at around 40%
 - Scheduled Scaling
 - Anticipate a scaling based on known usage patterns
 - Example: increase the min. capacity to 10 at 5 pm on Fridays

Auto Scaling Groups - Scaling Strategies

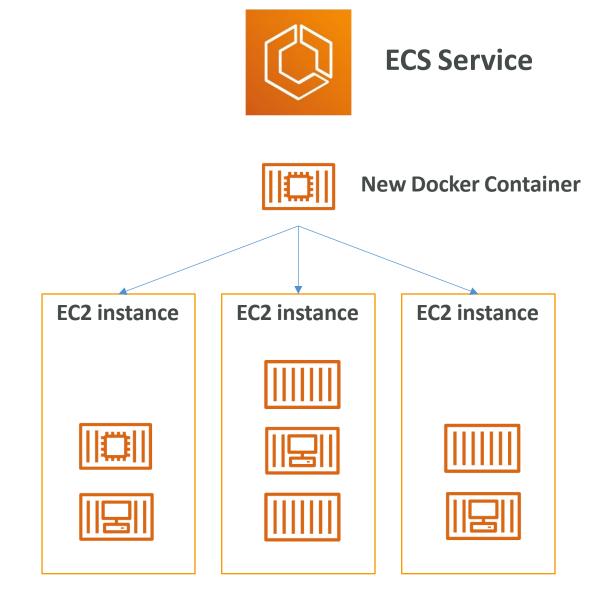
- Predictive Scaling
 - Uses Machine Learning to predict future traffic ahead of time
 - Automatically provisions the right number of EC2 instances in advance
- Useful when your load has predictable timebased patterns

ELB&ASG - Summary

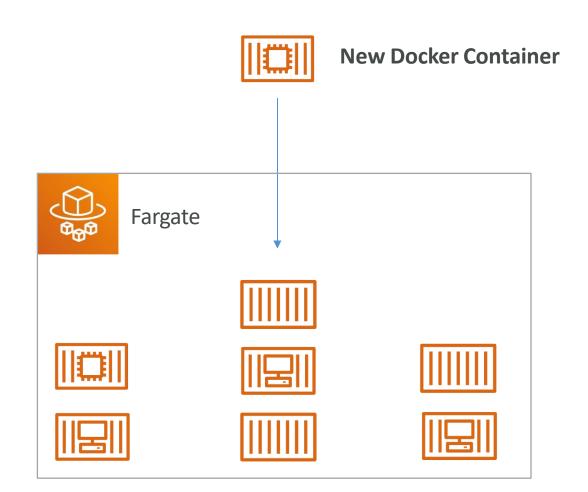
- High Availability vs Scalability (vertical and horizontal) vs Elasticity vs Agility in the Cloud
- Elastic Load Balancers (ELB)
 - Distribute traffic across backend EC2 instances, can be Multi-AZ
 - Supports health checks
 - 3 types: Application LB (HTTP L7), Network LB (TCP L4), Classic LB (old)
- Auto Scaling Groups (ASG)
 - Implement Basticity for your application, across multiple AZ
 - Scale EC2 instances based on the demand on your system, replace unhealthy
 - Integrated with the ELB


Other Compute Section

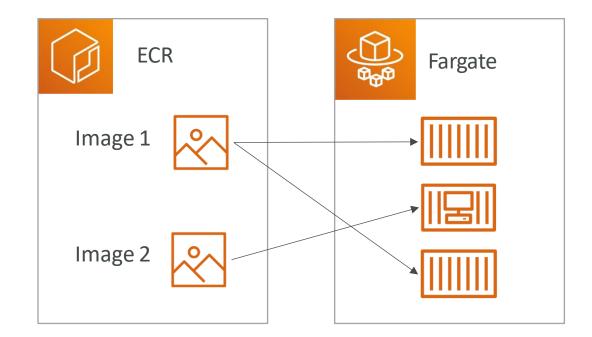
What is Docker?


- Docker is asoftware development platform to deploy apps
- Apps are packaged in containers that can be run on any OS
- Apps run the same, regardless of where they're run
 - Any machine
 - No compatibility issues
 - Predictable behavior
 - Less work
 - Easier to maintain and deploy
 - Works with any language, any OS, any technology
- Scale containers up and down very quickly (seconds)

Docker on an OS


ECS

- ECS = Bastic Container Service
- Launch Docker containers on AWS
- You must provision & maintain the infrastructure (the EC2 instances)
- AWS takes care of starting / stopping containers
- Has integrations with the Application Load Balancer


Fargate

- Launch Docker containers on AWS
- You do not provision the infrastructure (no EC2 instances to manage) - simpler!
- Serverless offering
- AWS just runs containers for you based on the CPU / RAM you need

ECR

- Bastic Container Registry
- Private Docker Registry on AWS
- This is where you store your Docker images so they can be run by ECS or Fargate

What's serverless?

- Serverless is a new paradigm in which the developers don't have to manage servers anymore...
- They just deploy code
- They just deploy... functions!
- Initially... Serverless == FaaS(Function as a Service)
- Serverless was pioneered by AWS Lambda but now also includes anything that's managed: "databases, messaging, storage, etc."
- Serverless does not mean there are no servers...
 it means you just don't manage / provision / see them

So far in this course...

Amazon S3

DynamoDB

Fargate

Lambda

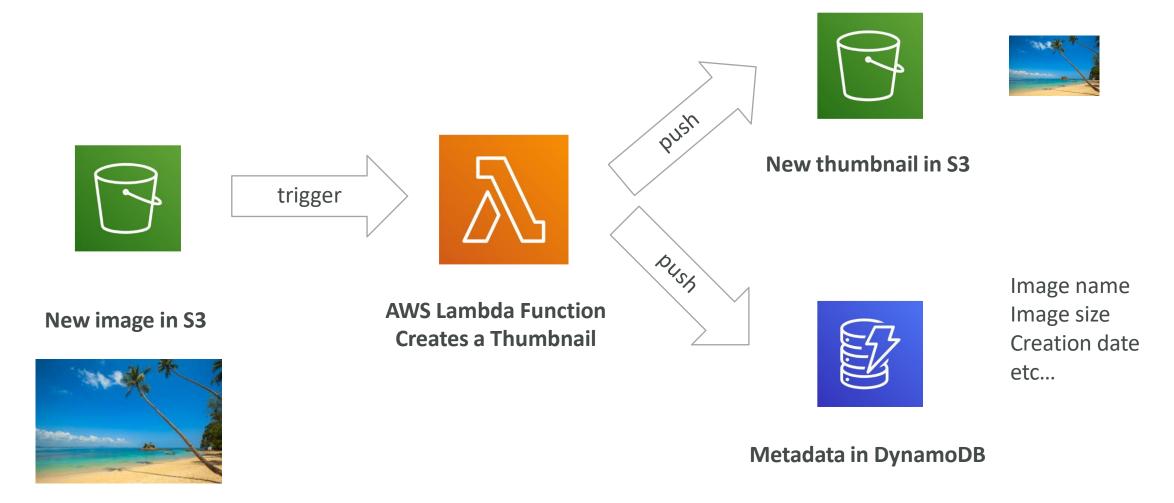
Why AWS Lambda

Amazon EC2

- Virtual Servers in the Cloud
- Limited by RAM and CPU
- Continuously running
- Scaling means intervention to add / remove servers

Amazon Lambda

- Virtual functions no servers to manage!
- Limited by time short executions
- Run on-demand
- Scaling is automated!

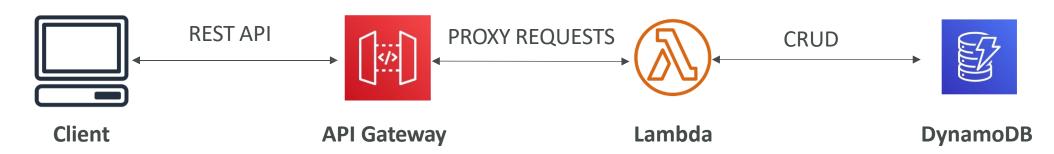

Benefits of AWS Lambda

- Easy Pricing:
 - Pay per request and compute time
 - Free tier of 1,000,000 AWS Lambda requests and 400,000 GBs of compute time
- Integrated with the whole AWS suite of services
- Event-Driven: functions get invoked by AWS when needed
- Integrated with many programming languages
- Easy monitoring through AWS CloudWatch
- Easyto get more resources per functions (up to 10GB of RAM!)
- Increasing RAM will also improve CPU and network!

AWS Lambda language support

- Node.js (JavaScript)
- Python
- Java (Java 8 compatible)
- C# (.NET Core)
- Golang
- C# / Powershell
- Ruby
- Custom Runtime API (community supported, example Rust)
- Lambda Container Image
 - The container image must implement the Lambda Runtime API
 - ECS/ Fargate is preferred for running arbitrary Docker images

Example: Serverless Thumbnail creation


AWS Lambda Pricing: example

- You can find overall pricing information here: https://aws.amazon.com/lambda/pricing/
- Pay per calls:
 - First 1,000,000 requests are free
 - \$0.20 per 1 million requests thereafter (\$0.0000002 per request)
- Pay per duration: (in increment of 1 ms)
 - 400,000 GB-seconds of compute time per month for FREE
 - == 400,000 seconds if function is 1GB RAM
 - == 3,200,000 seconds if function is 128 MB RAM
 - After that \$1.00 for 600,000 GB-seconds
- It is usually very cheap to run AWS Lambda so it's very popular

Amazon API Gateway

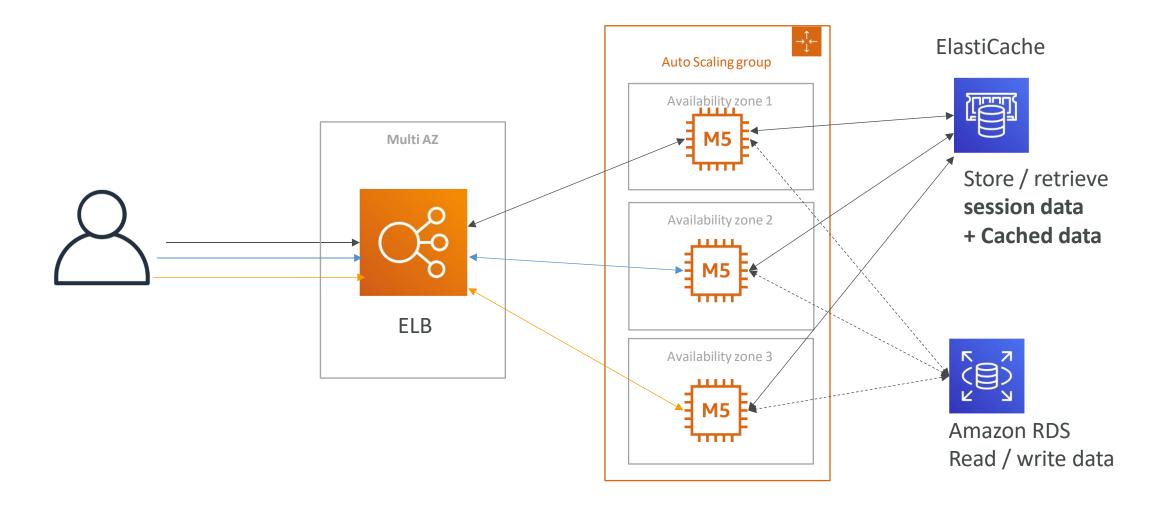
• Example: building a serverless API

- Fully managed service for developers to easily create, publish, maintain, monitor, and secure APIs
- Serverless and scalable
- Supports RESTful APIs and WebSocket APIs
- Support for security, user authentication, API throttling, API keys, monitoring...

AWS Batch

- Fully managed batch processing at any scale
- Efficiently run 100,000s of computing batch jobs on AWS
- A "batch" job is a job with a start and an end (opposed to continuous)
- Batch will dynamically launch EC2 instances or Spot Instances
- AWS Batch provisions the right amount of compute / memory
- You submit or schedule batch jobs and AWS Batch does the rest!
- Batch jobs are defined as Docker images and run on ECS
- Helpful for cost optimizations and focusing less on the infrastructure

Other Compute - Summary


- Docker: container technology to run applications
- ECS: run Docker containers on EC2 instances
- Fargate:
 - Run Docker containers without provisioning the infrastructure
 - Serverless offering (no EC2 instances)
- ECR: Private Docker Images Repository
- Batch: run batch jobs on AWS across managed EC2 instances
- Lightsail: predictable & low pricing for simple application & DB stacks

Lambda Summar y

- Lambda is Serverless, Function as a Service, seamless scaling, reactive
- Lambda Billing:
 - By the time run x by the RAM provisioned
 - By the number of invocations
- Language Support: many programming languages except (arbitrary) Docker
- Invocation time: up to 15 minutes
- Use cases:
 - Create Thumbnails for images uploaded onto S3
 - Run a Serverless cron job
- API Gateway: expose Lambda functions as HTTP API

Deploying and Managing Infrastructure at Scale Section

Typical architecture: Web App 3-tier

Developer problems on AWS

- Managing infrastructure
- Deploying Code
- Configuring all the databases, load balancers, etc
- Scaling concerns
- Most web apps have the same architecture (ALB + ASG)
- All the developers want is for their code to run!
- Possibly, consistently across different applications and environments

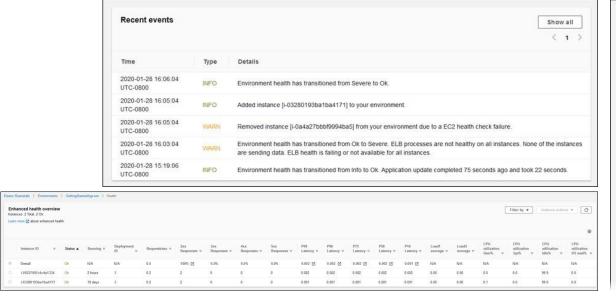
AWS Elastic Beanstalk Overview

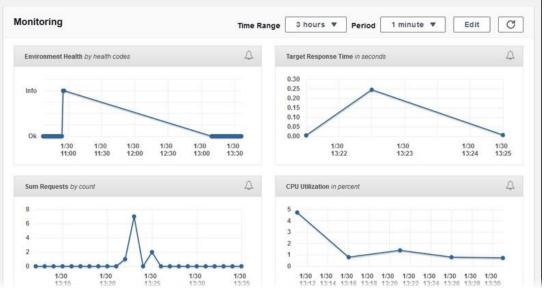
- Elastic Beanstalk is adeveloper centric view of deploying an application on AWS
- It uses all the component's we've seen before: EC2, ASG, ELB, RDS, etc...
- But it's all in one view that's easy to make sense of!
- We still have full control over the configuration
- Beanstalk = Platform as a Service (PaaS)
- Beanstalk is free but you pay for the underlying instances

Elastic Beanstalk

- Managed service
 - Instance configuration / OS is handled by Beanstalk
 - Deployment strategy is configurable but performed by Elastic Beanstalk
 - Capacity provisioning
 - · Load balancing & auto-scaling
 - Application health-monitoring & responsiveness
- Just the application code is the responsibility of the developer
- Three architecture models:
 - Single Instance deployment: good for dev
 - LB + ASG: great for production or pre-production web applications
 - ASG only: great for non-web apps in production (workers, etc..)

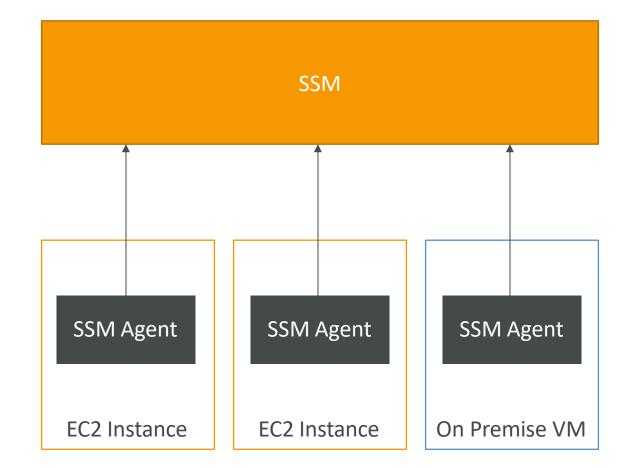
Eastic Beanstalk


- Support for many platforms:
 - Go
 - Java SE
 - Java with Tomcat
 - .NET on Windows Server with IIS
 - Node.js
 - PHP
 - Python
 - Ruby
 - Packer Builder

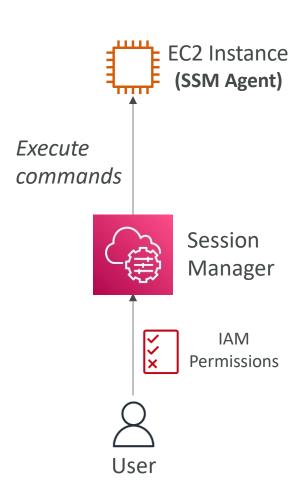

- Single Container Docker
- Multi-Container Docker
- Preconfigured Docker
- If not supported, you can write your custom platform (advanced)

Elastic Beanstalk – Health Monitoring

- Health agent pushes metrics to CloudWatch
- Checks for app health, publishes health events


AWS Systems Manager (SSM)

- Helps you manage your EC2 and On-Premises systems at scale
- Another Hybrid AWS service
- Get operational insights about the state of your infrastructure
- Suite of 10+ products
- Most important features are:
 - Patching automation for enhanced compliance
 - Run commands across an entire fleet of servers
 - Store parameter configuration with the SSMParameter Store
- Works for both Windows and Linux OS


How Systems Manager works

- We need to install the SSM agent onto the systems we control
- Installed by default on Amazon Linux AMI & some Ubuntu AMI
- If an instance can't be controlled with SSM, it's probably an issue with the SSM agent!
- Thanks to the SSM agent, we can run commands, patch & configure our servers

Systems Manager – SSM Session Manager

- Allows you to start a secure shell on your EC2 and on-premises servers
- No SSH access, bastion hosts, or SSH keys needed
- No port 22 needed (better security)
- Supports Linux, macOS, and Windows
- Send session log data to S3 or CloudWatch Logs

AWS OpsWorks

- Chef & Puppet help you perform server configuration automatically, or repetitive actions
- They work great with EC2 & On-Premises VM
- AWS OpsWorks = Managed Chef & Puppet
- It's an alternative to AWSSSM
- Only provision standard AWS resources:
 - EC2 Instances, Databases, Load Balancers, EBS volumes...

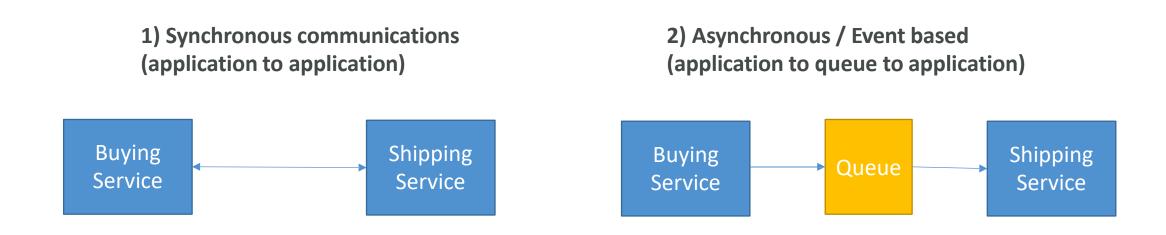
Deployment - Summary

- CloudFormation: (AWS only)
 - Infrastructure as Code, works with almost all of AWS resources
 - Repeat across Regions & Accounts
- Beanstalk: (AWS only)
 - Platform as a Service (PaaS), limited to certain programming languages or Docker
 - Deploy code consistently with aknown architecture: ex, ALB + EC2 + RDS
- CodeDeploy (hybrid): deploy & upgrade any application onto servers
- Systems Manager (hybrid): patch, configure and run commands at scale
- OpsWorks (hybrid): managed Chef and Puppet in AWS

Developer Services - Summary

- CodeCommit: Store code in private git repository (version controlled)
- CodeBuild: Build & test code in AWS
- CodeDeploy: Deploy code onto servers
- CodePipeline: Orchestration of pipeline (from code to build to deploy)
- CodeArtifact: Store software packages / dependencies on AWS
- CodeStar: Unified view for allowing developers to do CICD and code
- Cloud9: Cloud IDE (Integrated Development Environment) with collab
- AWS CDK: Define your cloud infrastructure using a programming language

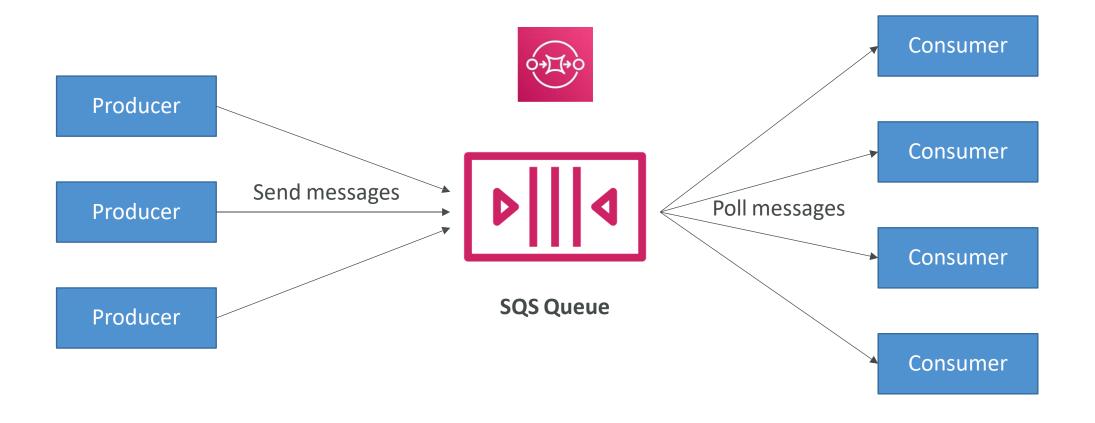
Why make a global application?



- A global application is an application deployed in multiple geographies
- On AWS: this could be Regions and / or Edge Locations
- Decreased Latency
 - · Latency is the time it takes for anetwork packet to reach aserver
 - It takes time for a packet from Asia to reach the US
 - · Deploy your applications closer to your users to decrease latency, better experience
- Disaster Recovery (DR)
 - If an AWS region goes down (earthquake, storms, power shutdown, politics)...
 - · You can fail-over to another region and have your application still working
 - · A DR plan is important to increase the availability of your application
- Attack protection: distributed global infrastructure is harder to attack

Cloud Integration Section

Section Introduction

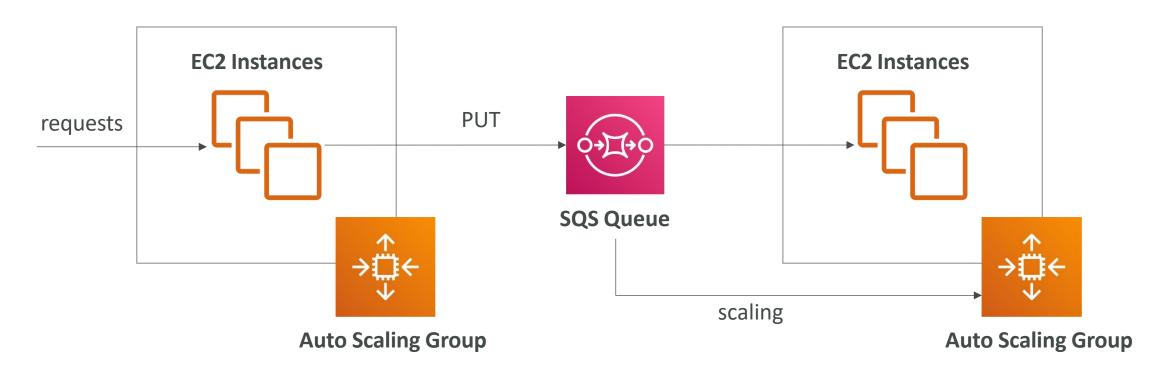

- When we start deploying multiple applications, they will inevitably need to communicate with one another
- There are two patterns of application communication

Section Introduction

- Synchronous between applications can be problematic if there are sudden spikes of traffic
- What if you need to suddenly encode 1000 videos but usually it's 10?
- In that case, it's better to decouple your applications:
 - using SQS: queue model
 - using SNS: pub/sub model
 - using Kinesis: real-time data streaming model
- These services can scale independently from our application!

Amazon SQS – Simple Queue Service What's a queue?

Amazon SQS – Standard Queue

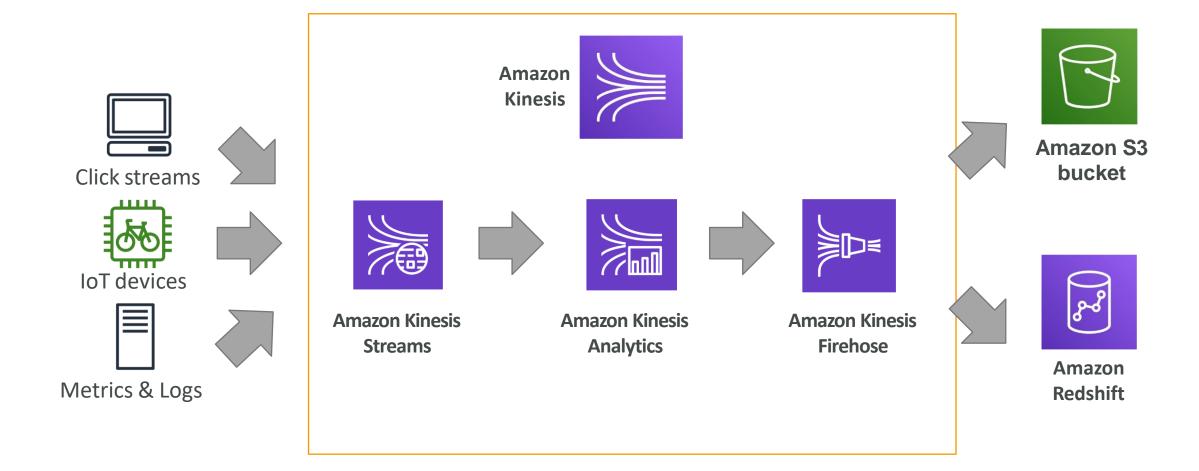


- Oldest AWS offering (over 10 years old)
- Fully managed service (~serverless), use to decouple applications
- Scales from 1 message per second to 10,000s per second
- Default retention of messages: 4 days, maximum of 14 days
- No limit to how many messages can be in the queue
- Messages are deleted after they're read by consumers
- Low latency (<10 ms on publish and receive)
- Consumers share the work to read messages & scale horizontally

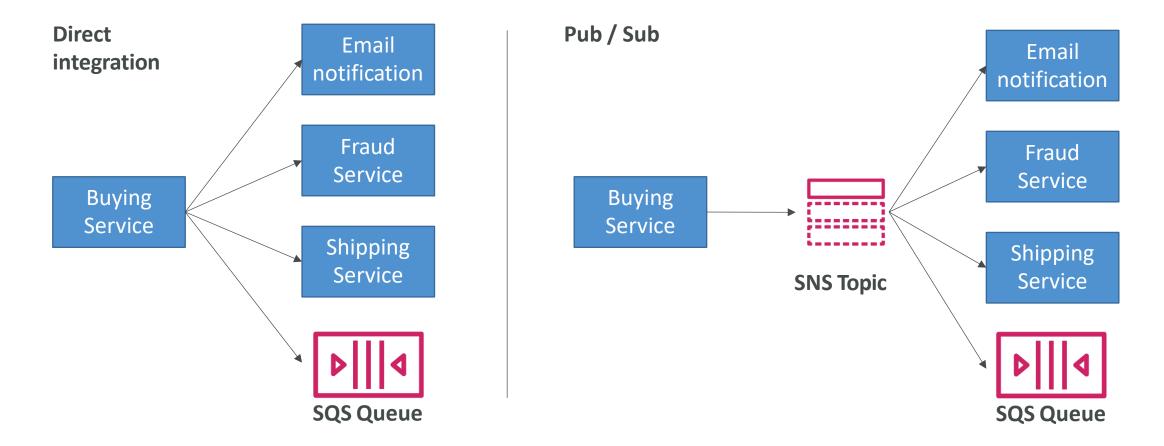
SQS to decouple between application tiers

WEB SERVERS

VIDEO PROCESSING

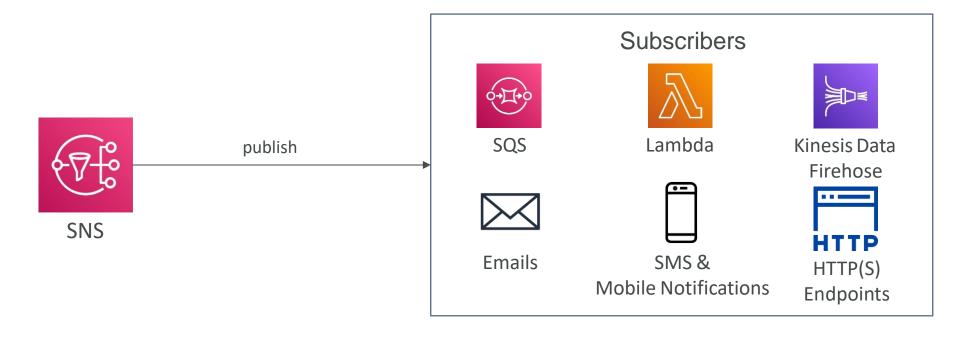


Amazon Kinesis


- For the exam: Kinesis = real-time big data streaming
- Managed service to collect, process, and analyze real-time streaming data at any scale
- Too detailed for the Cloud Practitioner exam but good to know:
 - Kinesis Data Streams: low latency streaming to ingest data at scale from hundreds of thousands of sources
 - Kinesis Data Firehose: load streams into S3, Redshift, ElasticSearch, etc...
 - Kinesis Data Analytics: perform real-time analytics on streams using SQL
 - Kinesis Video Streams: monitor real-time video streams for analytics or ML

Kinesis (high level over view)

Amazon SNS


• What if you want to send one message to many receivers?

Amazon SNS

- The "event publishers" only sends message to one SNS topic
- As many "event subscribers" as we want to listen to the SNS topic notifications
- Each subscriber to the topic will get all the messages
- Up to 12,500,000 subscriptions per topic, 100,000 topics limit

Integration Section – Summary

SQS:

- Queue service in AWS
- Multiple Producers, messages are kept up to 14 days
- Multiple Consumers share the read and delete messages when done
- Used to decouple applications in AWS

• SNS:

- Notification service in AWS
- Subscribers: Email, Lambda, SQS, HTTP, Mobile...
- · Multiple Subscribers, send all messages to all of them
- No message retention
- Kinesis: real-time data streaming, persistence and analysis
- Amazon MQ: managed message broker for Apache MQ and RabbitMQ in the cloud (MQTT, AMQP.. protocols)

Amazon S3 Section

Section introduction

- Amazon S3 is one of the main building blocks of AWS
- It's advertised as "infinitely scaling" storage
- Many websites use Amazon S3 as a backbone
- Many AWS services use Amazon S3 as an integration as well
- We'll have a step-by-step approach to S3

Amazon S3 Use cases

- Backup and storage
- Disaster Recovery
- Archive
- Hybrid Cloud storage
- Application hosting
- Media hosting
- Data lakes & big data analytics
- Software delivery
- Static website

Nasdaq stores 7 years of data into S3 Glacier

Sysco runs analytics on its data and gain business insights

Amazon S3 - Buckets

- Amazon S3 allows people to store objects (files) in "buckets" (directories)
- Buckets must have aglobally unique name (across all regions all accounts)
- Buckets are defined at the region level
- S3 looks like aglobal service but buckets are created in a region
- Naming convention
 - No uppercase, No underscore
 - 3-63 characters long
 - Not an IP
 - Must start with lowercase letter or number
 - Must NOT start with the prefix xn--
 - Must NOT end with the suffix -s3alias

S3 Bucket

Amazon S3 - Objects

- Objects (files) have a Key
- The key is the FULL path:
 - s3://my-bucket/my_file.txt
 - s3://my-bucket/my_folder1/another_folder/my_file.txt
- The key is composed of prefix + object name
 - s3://my-bucket/my_folder1/another_folder/my_file.txt
- There's no concept of "directories" within buckets (although the UI will trick you to think otherwise)
- Just keys with very long names that contain slashes ("/")

Amazon S3 – Objects (cont.)

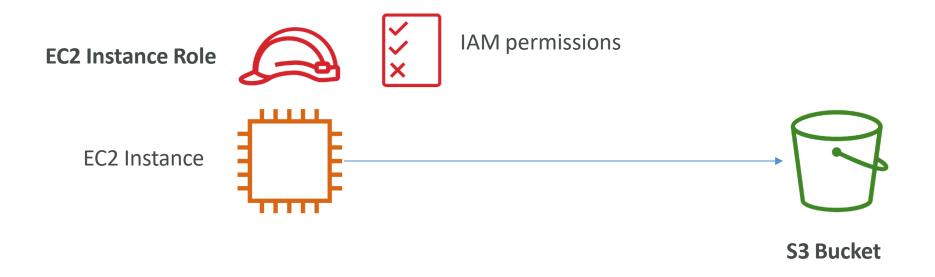
- Object values are the content of the body:
 - Max. Object Sze is 5TB (5000GB)
 - If uploading more than 5GB, must use "multi-part upload"
- Metadata (list of text key / value pairs system or user metadata)
- Tags (Unicode key / value pair up to 10) useful for security / lifecycle
- Version ID (if versioning is enabled)

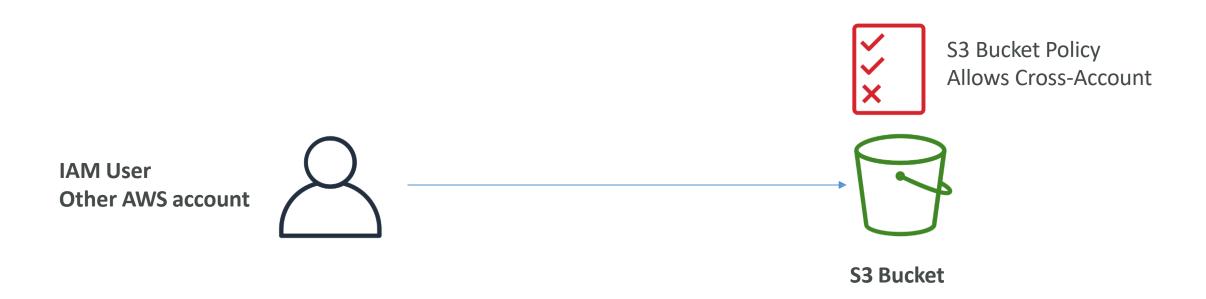
Amazon S3 – Security

- User-Based
 - IAM Policies which API calls should be allowed for a specific user from IAM
- Resource-Based
 - Bucket Policies bucket wide rules from the S3 console allows cross account
 - Object Access Control List (ACL) finer grain (can be disabled)
 - Bucket Access Control List (ACL) less common (can be disabled)
- Note: an IAM principal can access an S3 object if
 - The user IAM permissions ALLOW it OR the resource policy ALLOWS it
 - AND there's no explicit DENY
- Encryption: encrypt objects in Amazon S3 using encryption keys

S3 Bucket Policies

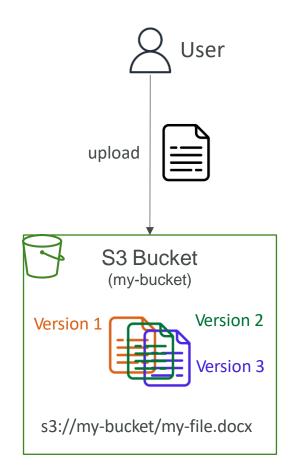
- JSON based policies
 - Resources: buckets and objects
 - Effect: Allow / Deny
 - Actions: Set of API to Allow or Deny
 - Principal: The account or user to apply the policy to
- Use S3 bucket for policy to:
 - Grant public access to the bucket
 - · Force objects to be encrypted at upload
 - Grant access to another account (Cross Account)


Example: Public Access - Use Bucket Policy


Example: User Access to S3 - IAM permissions

Example: EC2 instance access - Use IAM Roles

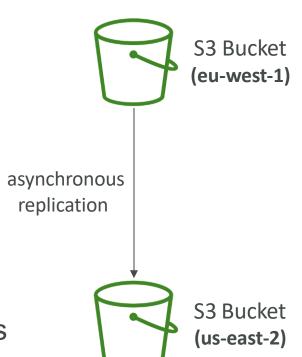
Advanced: Cross-Account Access — Use Bucket Policy


Bucket settings for Block Public Access

Block all public access On Block public access to buckets and objects granted through new access control lists (ACLs) On Block public access to buckets and objects granted through any access control lists (ACLs) On Block public access to buckets and objects granted through new public bucket or access point policies On Block public and cross-account access to buckets and objects through any public bucket or access point policies On

- These settings were created to prevent company data leaks
- If you know your bucket should never be public, leave these on
- Can be set at the account level

Amazon S3 - Versioning


- You can version your files in Amazon S3
- It is enabled at the bucket level
- Same key overwrite will change the "version": 1, 2, 3....
- It is best practice to version your buckets
 - Protect against unintended deletes (ability to restore a version)
 - · Easy roll back to previous version
- Notes:
 - Any file that is not versioned prior to enabling versioning will have version "null"
 - Suspending versioning does not delete the previous versions

Amazon S3 - Replication (CRR & SRR)

B

- Must enable Versioning in source and destination buckets
- Cross-Region Replication (CRR)
- Same-Region Replication (SRR)
- Buckets can be in different AWS accounts
- Copying is asynchronous
- Must give proper IAM permissions to S3
- Use cases:
 - CRR compliance, lower latency access, replication across accounts
 - SRR- log aggregation, live replication between production and test accounts

S3 Storage Classes

- Amazon S3 Standard General Purpose
- Amazon S3Standard-Infrequent Access (IA)
- Amazon S3One Zone-Infrequent Access
- Amazon S3 Glacier Instant Retrieval
- Amazon S3 Glacier Flexible Retrieval
- Amazon S3 Glacier Deep Archive
- Amazon S3 Intelligent Tiering
- Can move between dasses manually or using S3 Lifecycle configurations

S3 Durability and Availability

Durability:

- High durability (99.99999999%, 11 9's) of objects across multiple AZ
- If you store 10,000,000 objects with Amazon S3, you can on average expect to incur aloss of asingle object once every 10,000 years
- Same for all storage classes

Availability:

- · Measures how readily available aservice is
- Varies depending on storage class
- Example: S3standard has 99.99% availability = not available 53 minutes a year

\$3 Standard - General Purpose

- 99.99% Availability
- Used for frequently accessed data
- Low latency and high throughput
- Sustain 2 concurrent facility failures
- Use Cases: Big Data analytics, mobile & gaming applications, content distribution...

S3 Storage Classes – Infrequent Access

- · For data that is less frequently accessed, but requires rapid access when needed
- Lower cost than S3 Standard
- Amazon S3 Standard-Infrequent Access (S3 Standard-IA)
 - 99.9% Availability
 - Use cases: Disaster Recovery, backups

- Amazon S3 One Zone-Infrequent Access (S3 One Zone-IA)
 - High durability (99.99999999) in a single AZ; data lost when AZ is destroyed
 - 99.5% Availability
 - Use Cases: Storing secondary backup copies of on-premise data, or data you can recreate

Amazon S3 Glacier Storage Classes

- Low-cost object storage meant for archiving / backup
- Pricing: price for storage + object retrieval cost
- Amazon S3 Glacier Instant Retrieval
 - Millisecond retrieval, great for data accessed once aquarter
 - Minimum storage duration of 90 days
- Amazon S3 Glacier Flexible Retrieval (formerly Amazon S3 Glacier):
 - Expedited (1 to 5 minutes), Standard (3 to 5 hours), Bulk (5 to 12 hours) free
 - Minimum storage duration of 90 days
- Amazon S3 Glacier Deep Archive for long term storage:
 - Standard (12 hours), Bulk (48 hours)
 - Minimum storage duration of 180 days

S3 Intelligent-Tiering

- Small monthly monitoring and auto-tiering fee
- Moves objects automatically between Access Tiers based on usage
- There are no retrieval charges in S3Intelligent-Tiering
- Frequent Access tier (automatic): default tier
- Infrequent Access tier (automatic): objects not accessed for 30 days
- Archive Instant Access tier (automatic): objects not accessed for 90 days
- Archive Access tier (optional): configurable from 90 days to 700+ days
- Deep Archive Access tier (optional): config. from 180 days to 700+ days

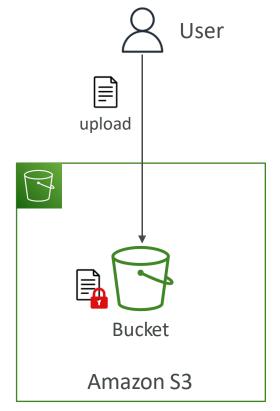
S3 Storage Classes Comparison

	Standard	Intelligent- Tiering	Standard-IA	One Zone-IA	Glacier Instant Retrieval	Glacier Flexible Retrieval	Glacier Deep Archive
Durability	99.9999999% == (11 9's)						
Availability	99.99%	99.9%	99.9%	99.5%	99.9%	99.99%	99.99%
Availability SLA	99.9%	99%	99%	99%	99%	99.9%	99.9%
Availability Zones	>= 3	>= 3	>= 3	1	>= 3	>= 3	>= 3
Min. Storage Duration Charge	None	None	30 Days	30 Days	90 Days	90 Days	180 Days
Min. Billable Object Size	None	None	128 KB	128 KB	128 KB	40 KB	40 KB
Retrieval Fee	None	None	Per GB retrieved	Per GB retrieved	Per GB retrieved	Per GB retrieved	Per GB retrieved

https://aws.amazon.com/s3/storage-classes/

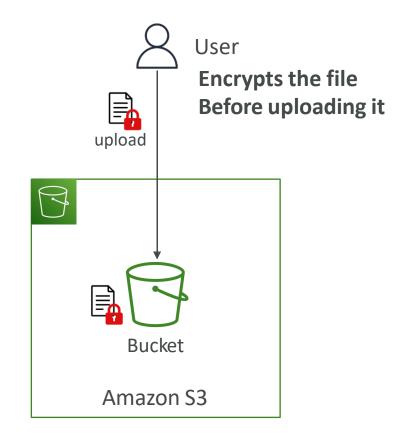
S3Storage Classes – Price Comparison Example: us-east-1

	Standard	Intelligent-Tiering	Standard-IA	One Zone-IA	Glacier Instant Retrieval	Glacier Flexible Retrieval	Glacier Deep Archive
Storage Cost (per GB per month)	\$0.023	\$0.0025 - \$0.023	%0.0125	\$0.01	\$0.004	\$0.0036	\$0.00099
Retrieval Cost (per 1000 request)	GET: \$0.0004 POST: \$0.005	GET: \$0.0004 POST: \$0.005	GET: \$0.001 POST: \$0.01	GET: \$0.001 POST: \$0.01	GET: \$0.01 POST: \$0.02	GET: \$0.0004 POST: \$0.03 Expedited: \$10 Standard: \$0.05 Bulk: free	GET: \$0.0004 POST: \$0.05 Standard: \$0.10 Bulk: \$0.025
Retrieval Time	Instantaneous					Expedited (1 – 5 mins) Standard (3 – 5 hours) Bulk (5 – 12 hours)	Standard (12 hours) Bulk (48 hours)
Monitoring Cost (pet 1000 objects)		\$0.0025					


https://aws.amazon.com/s3/pricing/

S3 Encryption

No Encryption



Server-Side Encryption

Server encrypts the file after receiving it

Client-Side Encryption

Shared Responsibility Model for S3

- Infrastructure (global security, durability, availability, sustain concurrent loss of data in two facilities)
- Configuration and vulnerability analysis
- Compliance validation

- S3 Versioning
- S3 Bucket Policies
- S3 Replication Setup
- Logging and Monitoring
- S3 Storage Classes
- Data encryption at rest and in transit

AWSSnow Family

 Highly-secure, portable devices to collect and process data at the edge, and migrate data into and out of AWS

Data migration:

• Edge computing:

Snowball Edge (for data transfers)

- Physical data transport solution: move TBs or PBs of data in or out of AWS
- Alternative to moving data over the network (and paying network fees)
- Pay per data transfer job
- Provide block storage and Amazon S3-compatible object storage
- Snowball Edge Storage Optimized
 - <u>80 TB of HDD capacity</u> for block volume and S3 compatible object storage
- Snowball Edge Compute Optimized
 - <u>42 TB of HDD capacity</u> for block volume and S3 compatible object storage
- Use cases: large data cloud migrations, DC decommission, disaster recovery

AWS Snowcone

- Small, portable computing, anywhere, rugged & secure, withstands harsh environments
- Light (4.5 pounds, 2.1 kg)
- Device used for edge computing, storage, and data transfer
- 8 TBs of usable storage
- Use Snowcone where Snowball does not fit (space-constrained environment)
- Must provide your own battery / cables

AWS Snowmobile

- Transfer exabytes of data (1 EB= 1,000 PB= 1,000,000 TBs)
- Each Snowmobile has 100 PB of capacity (use multiple in parallel)
- High security: temperature controlled, GPS, 24/7 video surveillance
- Better than Snowball if you transfer more than 10 PB

AWSSnow Family for Data Migrations

Snowcone

Snowball Edge

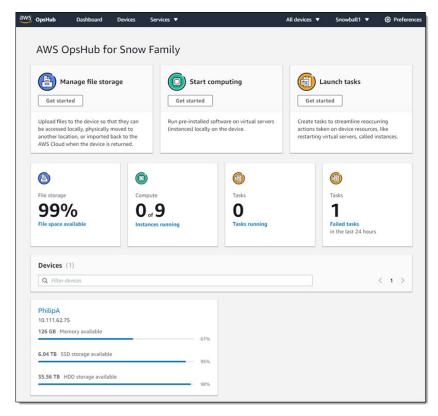
Snowmobile

	Snowcone	Snowball Edge Storage Optimized	Snowmobile
Storage Capacity	8 TB usable	80 TB usable	< 100 PB
Migration Size	Up to 24 TB, online and offline	Up to petabytes, offline	Up to exabytes, offline
DataSync agent	Pre-installed		
Storage Clustering		Up to 15 nodes	

Snow Family – Usage Process

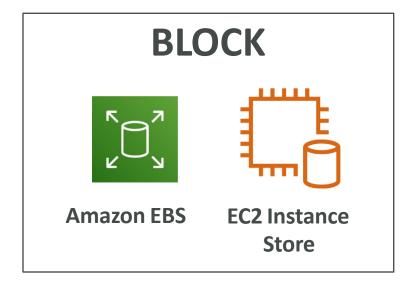
- 1. Request Snowball devices from the AWS console for delivery
- 2. Install the snowball client / AWS OpsHub on your servers
- 3. Connect the snowball to your servers and copy files using the client
- 4. Ship back the device when you're done (goes to the right AWS facility)
- 5. Data will be loaded into an S3 bucket
- 6. Snowball is completely wiped

Snow Family - Edge Computing

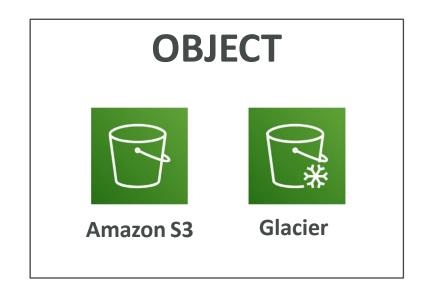

- Snowcone (smaller)
 - 2 CPUs, 4 GB of memory, wired or wireless access
 - USB-C power using a cord or the optional battery
- Snowball Edge Compute Optimized
 - 52 vCPUs, 208 GiB of RAM
 - Optional GPU (useful for video processing or machine learning)
 - 42 TB usable storage
- Snowball Edge Storage Optimized
 - Up to 40 vCPUs, 80 GiB of RAM
 - · Object storage clustering available
- All: Can run EC2 Instances & AWS Lambda functions (using AWS IoT Greengrass)
- Long-term deployment options: 1 and 3 years discounted pricing

AWS OpsHub

- Historically, to use Snow Family devices, you needed a CLI (Command Line Interface tool)
- Today, you can use AWS OpsHub (a software you install on your computer / laptop) to manage your Snow Family Device
 - Unlocking and configuring single or clustered devices
 - Transferring files
 - Launching and managing instances running on Snow Family Devices
 - Monitor device metrics (storage capacity, active instances on your device)
 - Launch compatible AWS services on your devices (ex: Amazon EC2 instances, AWS DataSync, Network File System (NFS))



https://aws.amazon.com/blogs/aws/aws-snowball-edge-update/


Hybrid Cloud for Storage

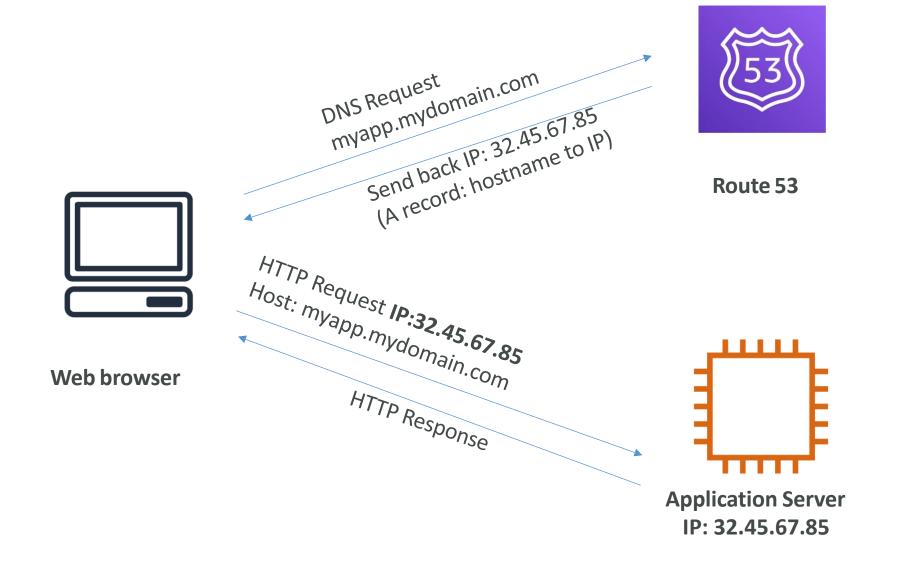
- AWS is pushing for "hybrid cloud"
 - Part of your infrastructure is on-premises
 - · Part of your infrastructure is on the cloud
- This can be due to
 - Long doud migrations
 - Security requirements
 - Compliance requirements
 - IT strategy
- S3 is a proprietary storage technology (unlike #S/ NFS), so how do you expose the S3 data on-premise?
- AWS Storage Gateway!

AWS Storage Cloud Native Options

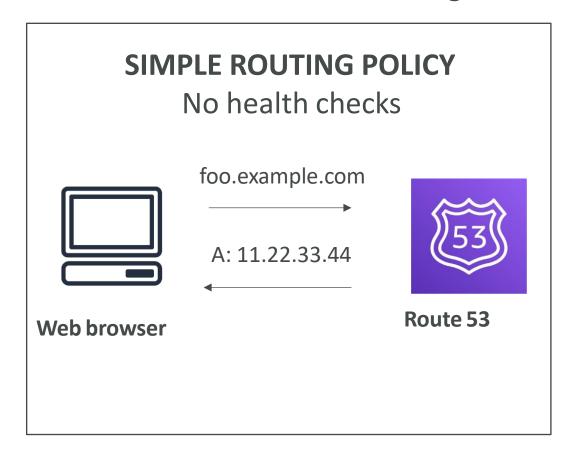
AWS Storage Gateway

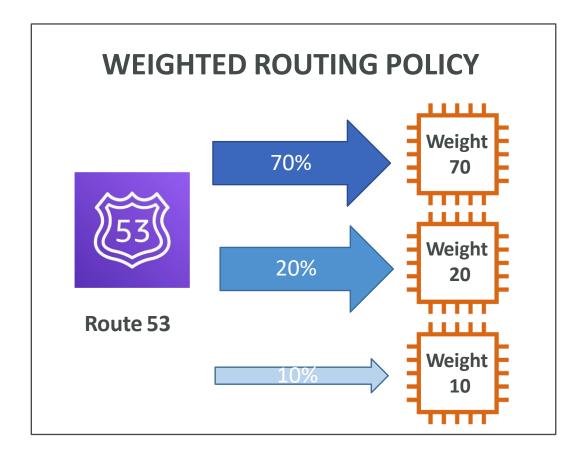
- Bridge between on-premise data and cloud data in S3
- Hybrid storage service to allow onpremises to seamlessly use the AWS Cloud
- Use cases: disaster recovery, backup & restore, tiered storage
- Types of Storage Gateway:
 - File Gateway
 - Volume Gateway
 - Tape Gateway
- No need to know the types at the exam

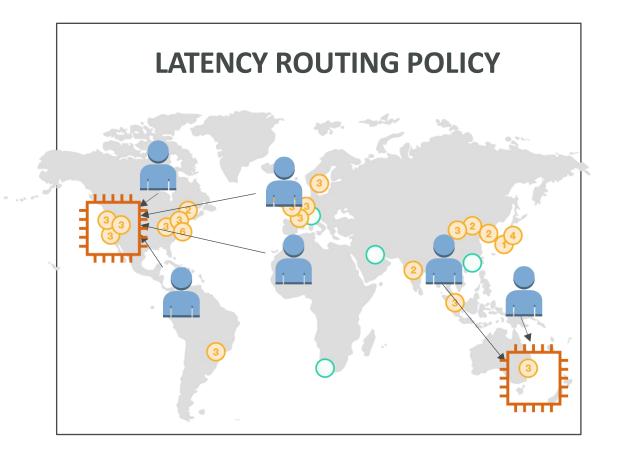
Amazon S3 – Summary

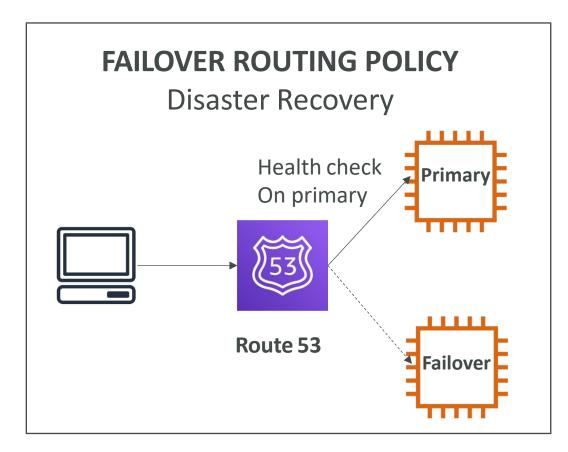

- Buckets vs Objects: global unique name, tied to a region
- S3 security: IAM policy, S3 Bucket Policy (public access), S3 Encryption
- S3 Websites: host a static website on Amazon S3
- S3 Versioning: multiple versions for files, prevent accidental deletes
- S3 Replication: same-region or cross-region, must enable versioning
- S3 Storage Classes: Standard, IA, 1Z-IA, Intelligent, Glacier (Instant, Flexible, Deep)
- Snow Family: import data onto S3through aphysical device, edge computing
- OpsHub: desktop application to manage Snow Family devices
- Storage Gateway: hybrid solution to extend on-premises storage to S3

Amazon Route 53 Overview

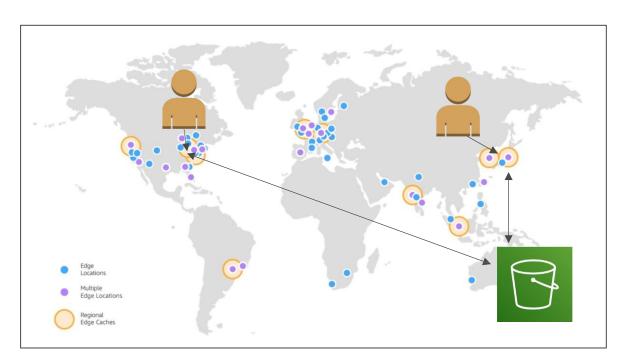

- Route53 is a Managed DNS (Domain Name System)
- DNS is a collection of rules and records which helps clients understand how to reach a server through URLs.
- In AWS, the most common records are:
 - <u>www.google.com</u> => 12.34.56.78 == A record (IPv4)
 - www.google.com => 2001:0db8:85a3:0000:0000:8a2e:0370:7334 == AAAA IPv6
 - search.google.com => www.google.com == CNAME: hostname to hostname
 - example.com => AWS resource == Alias (ex: ELB, CloudFront, S3, RDS, etc...)


Route 53 - Diagram for A Record


Route 53 Routing Policies


Need to know them at a high-level for the Cloud Practitioner Exam

Route 53 Routing Policies

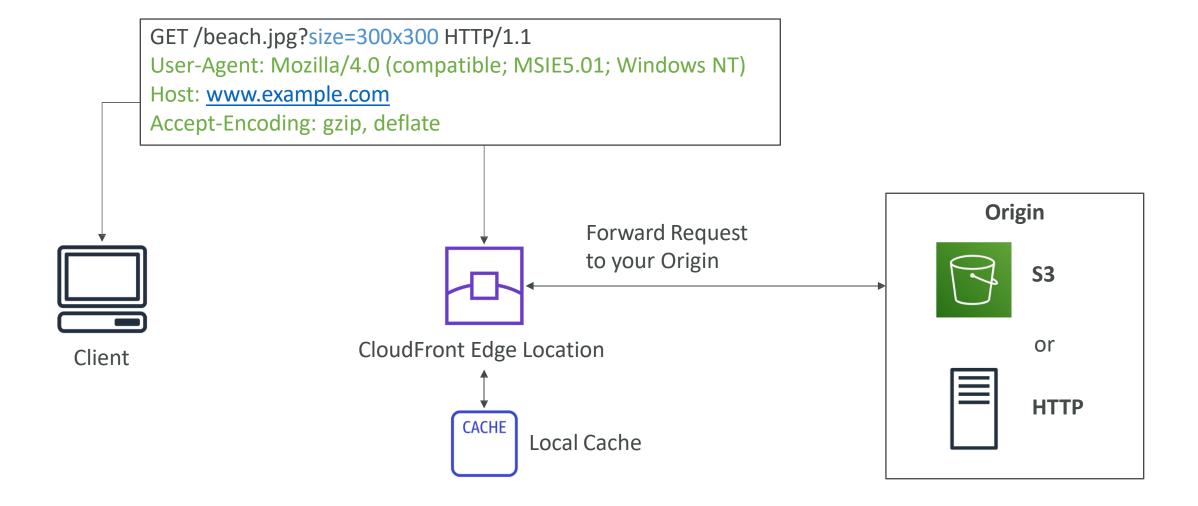


Amazon CloudFront

- Content Delivery Network (CDN)
- Improves read performance, content is cached at the edge
- Improves users experience
- 216 Point of Presence globally (edge locations)
- DDoS protection (because worldwide), integration with Shield, AWSWeb Application Firewall

Source: https://aws.amazon.com/cloudfront/features/?nc=sn&loc=2

CloudFront - Origins

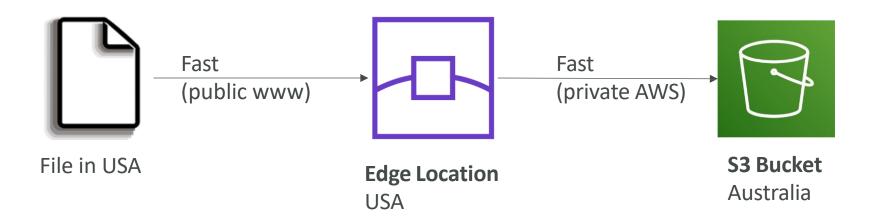

• S3 bucket

- · For distributing files and caching them at the edge
- Enhanced security with CloudFront Origin Access Control (OAC)
- OAC is replacing Origin Access Identity (OAI)
- CloudFront can be used as an ingress (to upload files to S3)

Custom Origin (HTTP)

- Application Load Balancer
- EC2 instance
- S3 website (must first enable the bucket as a static S3 website)
- Any HTTP backend you want

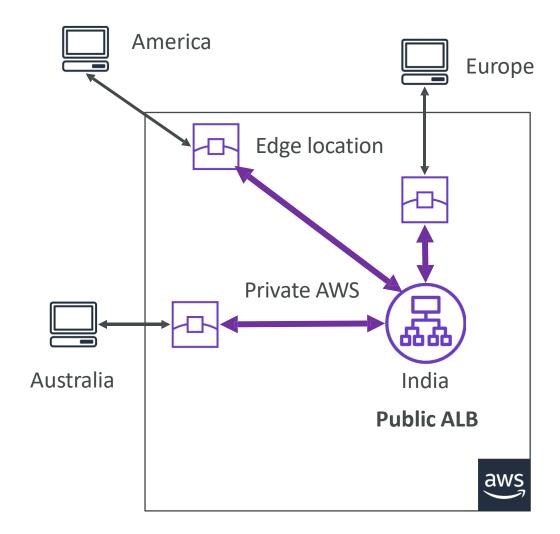
CloudFront at a high level



CloudFront vs S3 Cross Region Replication

- CloudFront:
 - Global Edge network
 - Files are cached for aTTL (maybe a day)
 - Great for static content that must be available everywhere
- S3 Cross Region Replication:
 - Must be setup for each region you want replication to happen
 - Files are updated in near real-time
 - Read only
 - Great for dynamic content that needs to be available at low-latency in few regions

S3 Transfer Acceleration


• Increase transfer speed by transferring file to an AWS edge location which will forward the data to the S3 bucket in the target region

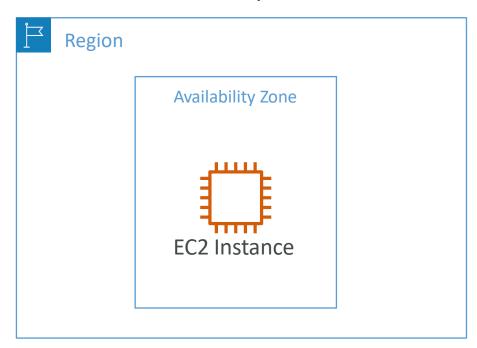
Test the tool at: https://s3-accelerate-speedtest.s3-accelerate.amazonaws.com/en/accelerate-speed-comparsion.html

AWSGlobal Accelerator

- Improve global application <u>availability</u> and <u>performance</u> using the AWS global network
- Leverage the AWS internal network to optimize the route to your application (60% improvement)
- 2 Anycast IP are created for your application and traffic is sent through Edge Locations
- The Edge locations send the traffic to your application

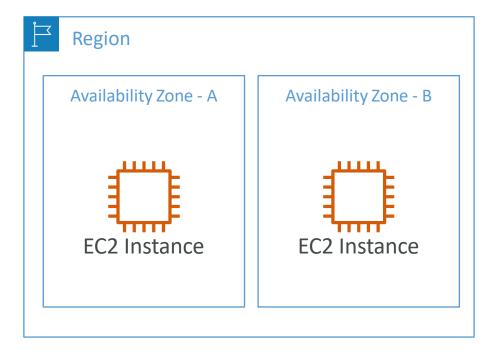
AWS Global Accelerator vs CloudFront

- · They both use the AWS global network and its edge locations around the world
- Both services integrate with AWS Shield for DDoS protection.
- CloudFront Content Delivery Network
 - Improves performance for your cacheable content (such asimages and videos)
 - Content is served at the edge

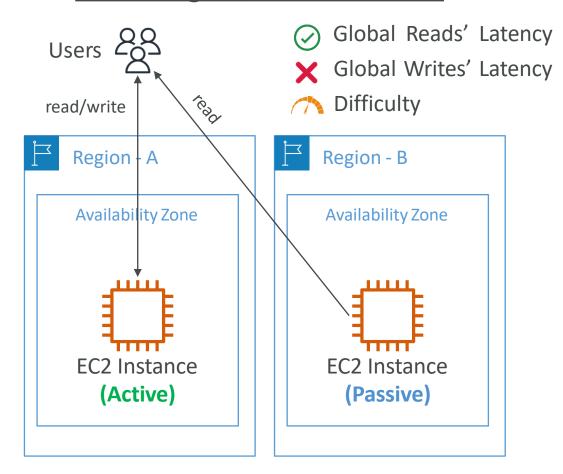

Global Accelerator

- · No caching, proxying packets at the edge to applications running in one or more AWS Regions.
- Improves performance for awide range of applications over TCP or UDP
- Good for HTTP use cases that require static IP addresses
- · Good for HTTP use cases that required deterministic, fast regional failover

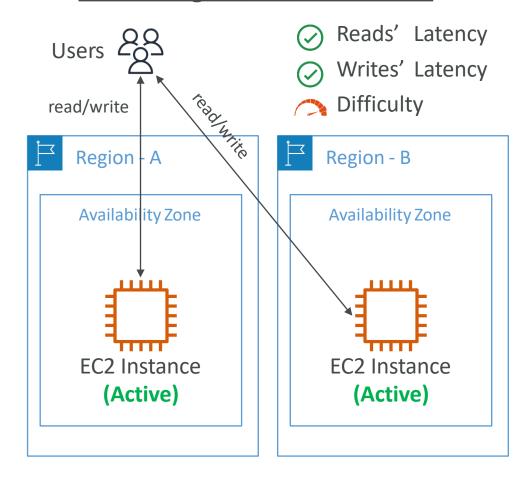
Global Applications Architecture


Single Region, Single AZ

- X High Availability
- ★ Global Latency
- Difficulty


Single Region, Multi AZ

- High Availability
- X Global Latency
- Difficulty



Global Applications Architecture

Multi Region, Active-Passive

Multi Region, Active-Active

Global Applications in AWS

- Global DNS Route 53
 - · Great to route users to the closest deployment with least latency
 - Great for disaster recovery strategies

- Global Content Delivery Network (CDN): CloudFront
 - Replicate part of your application to AWS Edge Locations decrease latency
 - Cache common requests improved user experience and decreased latency

- S3 Transfer Acceleration
 - Accelerate global uploads & downloads into Amazon S3

- AWS Global Accelerator:
 - Improve global application availability and performance using the AWS global network

Global Applications in AWS-Summary

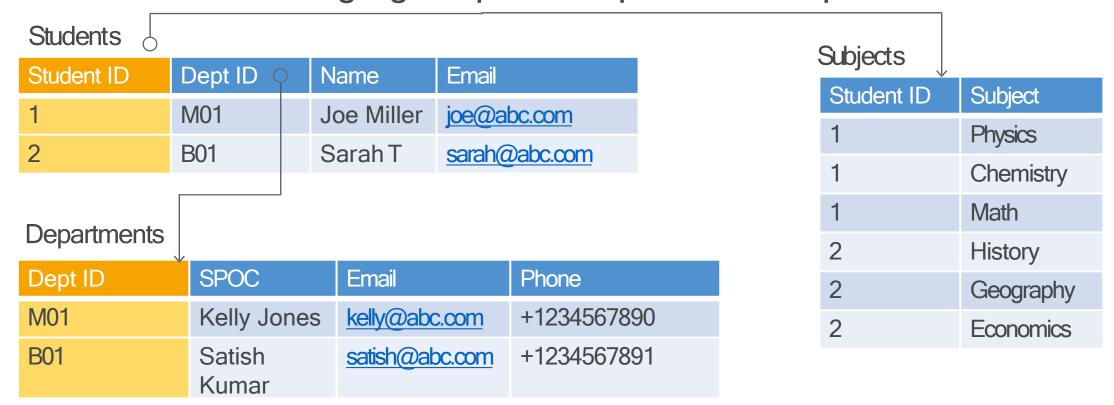
- Global DNS: Route 53
 - · Great to route users to the closest deployment with least latency
 - Great for disaster recovery strategies

- Global Content Delivery Network (CDN): CloudFront
 - Replicate part of your application to AWS Edge Locations decrease latency
 - Cache common requests improved user experience and decreased latency

- S3 Transfer Acceleration
 - Accelerate global uploads & downloads into Amazon S3

- AWS Global Accelerator
 - Improve global application availability and performance using the AWS global network

Databases Section


Databases Intro

- Storing data on disk (EFS, EBS, EC2 Instance Store, S3) can have its limits
- Sometimes, you want to store data in adatabase...
- You can structure the data
- You build indexes to efficiently query / search through the data
- You define relationships between your datasets
- Databases are optimized for a purpose and come with different features, shapes and constraints

Relational Databases

- Looks just like Excel spreadsheets, with links between them!
- Can use the SQL language to perform queries / lookups

NoSQL Databases

- NoSQL = non-SQL = non relational databases
- NoSQL databases are purpose built for specific data models and have flexible schemas for building modern applications.
- Benefits:
 - Flexibility: easy to evolve data model
 - · Scalability: designed to scale-out by using distributed clusters
 - High-performance: optimized for a specific data model
 - Highly functional: types optimized for the data model
- Examples: Key-value, document, graph, in-memory, search databases

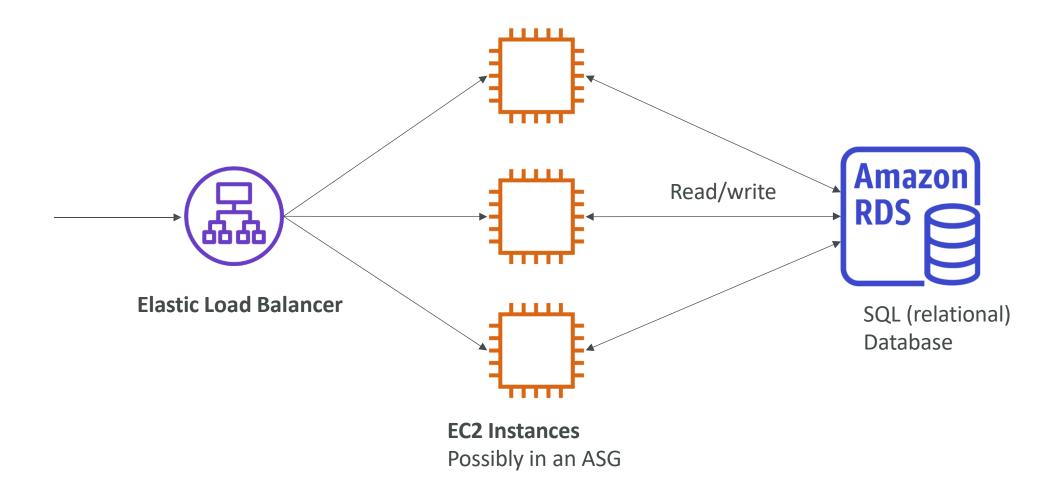
NoSQL data example: SON

- JSON = JavaScript Object Notation
- SON is a common form of data that fits into a NoSQL model
- Data can be nested
- Fields can change over time
- Support for new types: arrays, etc...

Databases & Shared Responsibility on AWS

- AWS offers use to manage different databases
- Benefits include:
 - Quick Provisioning, High Availability, Vertical and Horizontal Scaling
 - Automated Backup & Restore, Operations, Upgrades
 - Operating System Patching is handled by AWS
 - Monitoring, alerting
- Note: many databases technologies could be run on EC2, but you must handle yourself the resiliency, backup, patching, high availability, fault tolerance, scaling...

AWSRDSOverview



- RDS stands for Relational Database Service
- It's a managed DB service for DB use SQL as a query language.
- It allows you to create databases in the cloud that are managed by AWS
 - Postgres
 - MySQL
 - MariaDB
 - Oracle
 - Microsoft SQL Server
 - Aurora (AWS Proprietary database)

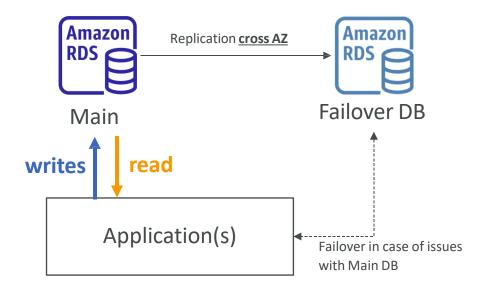
Advantage over using RDS versus deploying DB on EC2

- RDS is a managed service:
 - · Automated provisioning, OS patching
 - Continuous backups and restore to specific timestamp (Point in Time Restore)!
 - Monitoring dashboards
 - Read replicas for improved read performance
 - Multi AZ setup for DR (Disaster Recovery)
 - Maintenance windows for upgrades
 - Scaling capability (vertical and horizontal)
 - Storage backed by EBS (gp2 or io1)
- BUT you can't SSHinto your instances

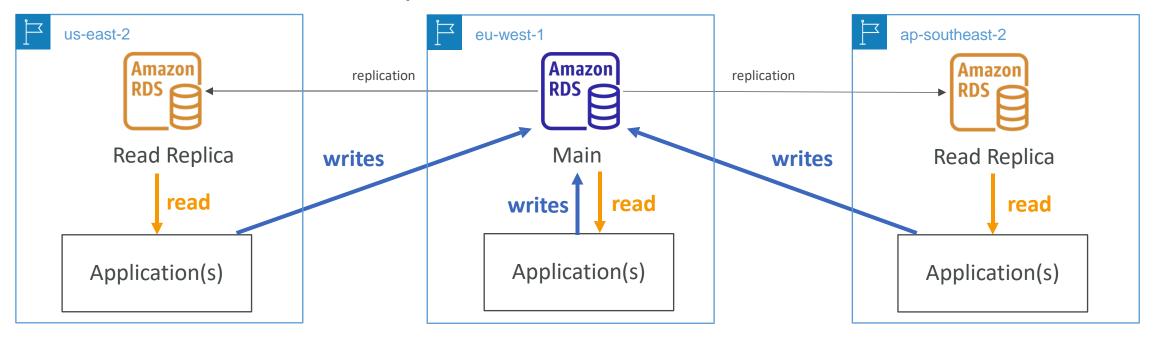
RDS Solution Architecture

Amazon Aurora

- Aurora is aproprietary technology from AWS (not open sourced)
- PostgreSQL and MySQL are both supported as Aurora DB
- Aurora is "AWS cloud optimized" and daims 5x performance improvement over MySQL on RDS, over 3x the performance of Postgres on RDS
- Aurora storage automatically grows in increments of 10GB, up to 64 TB.
- Aurora costs more than RDS (20% more) but is more efficient
- Not in the free tier


RDS Deployments: Read Replicas, Multi-AZ

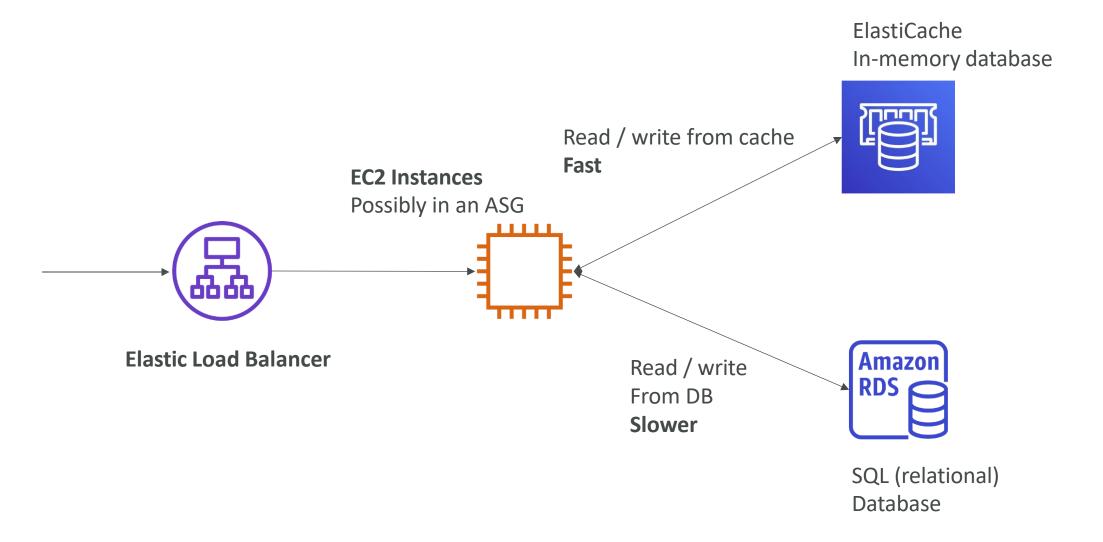
- Read Replicas:
 - Scale the read workload of your DB
 - Can create up to 5 Read Replicas
 - Data is only written to the main DB


• Multi-AZ:

- Failover in case of AZ outage (high availability)
- Data is only read/written to the main database
- · Can only have 1 other AZ as failover

RDS Deployments: Multi-Region

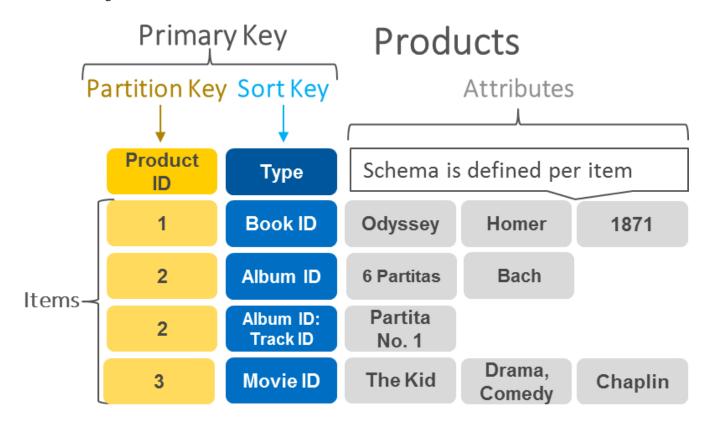
- Multi-Region (Read Replicas)
 - Disaster recovery in case of region issue
 - Local performance for global reads
 - Replication cost



Amazon EastiCache Overview

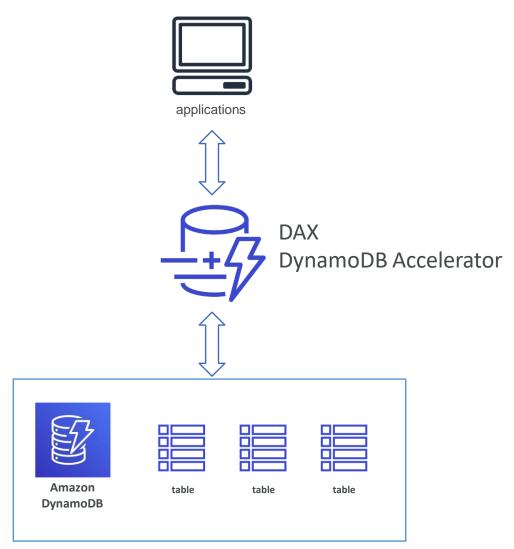
- The same way RDS is to get managed Relational Databases...
- ElastiCache is to get managed Redis or Memcached
- Caches are in-memory databases with high performance, low latency
- Helps reduce load off databases for read intensive workloads
- AWS takes care of OS maintenance / patching, optimizations, setup, configuration, monitoring, failure recovery and backups

ElastiCache Solution Architecture - Cache


DynamoDB

- Fully Managed Highly available with replication across 3 AZ
- NoSQL database not a relational database
- Scales to massive workloads, distributed "serverless" database
- Millions of requests per seconds, trillions of row, 100s of TB of storage
- Fast and consistent in performance
- Single-digit millisecond latency low latency retrieval
- Integrated with IAM for security, authorization and administration
- Low cost and auto scaling capabilities
- Standard & Infrequent Access (IA) Table Class

DynamoDB – type of data


• DynamoDB is a key/value database

https://aws.amazon.com/nosql/key-value/

Dynamo DB Accelerator - DAX

- Fully Managed in-memory cache for DynamoDB
- 10x performance improvement singledigit millisecond latency to microseconds latency - when accessing your DynamoDB tables
- Secure, highly scalable & highly available
- Difference with BastiCache at the CCP level: DAX is only used for and is integrated with DynamoDB, while BastiCache can be used for other databases

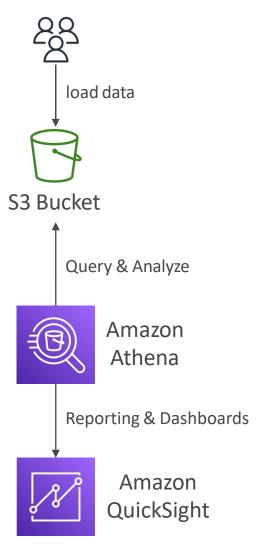
DynamoDB - Global Tables

- Make a DynamoDB table accessible with low latency in multiple-regions
- Active-Active replication (read/write to any AWS Region)

Redshift Overview

- Redshift is based on PostgreSQL, but it's not used for OLTP
- It's OLAP online analytical processing (analytics and data warehousing)
- Load data once every hour, not every second
- 10x better performance than other data warehouses, scale to PBs of data
- Columnar storage of data (instead of row based)
- Massively Parallel Query Execution (MPP), highly available
- Pay as you go based on the instances provisioned
- Has a SQL interface for performing the queries
- BI tools such as AWS Quicksight or Tableau integrate with it

Amazon EMR



- EMR stands for "Elastic MapReduce"
- EMR helps creating Hadoop clusters (Big Data) to analyze and process vast amount of data
- The clusters can be made of hundreds of EC2 instances
- Also supports Apache Spark, HBase, Presto, Flink...
- EMR takes care of all the provisioning and configuration
- Auto-scaling and integrated with Spot instances
- Use cases: data processing, machine learning, web indexing, big data...

Amazon Athena

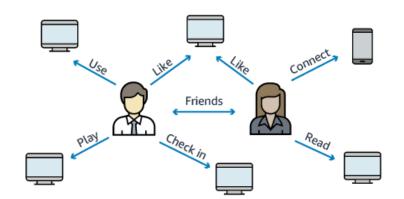
- Serverless query service to analyze data stored in Amazon S3
- Uses standard SQL language to query the files
- Supports CSV, JSON, ORC, Avro, and Parquet (built on Presto)
- Pricing: \$5.00 per TB of data scanned
- Use compressed or columnar data for cost-savings (less scan)
- Use cases: Business intelligence / analytics / reporting, analyze & query VPC Flow Logs, ELB Logs, Cloud Trail trails, etc...
- Exam Tip: analyze data in S3 using serverless SQL, use Athena

Amazon QuickSight

- Serverless machine learning-powered business intelligence service to create interactive dashboards
- Fast, automatically scalable, embeddable, with per-session pricing
- Use cases:
 - Business analytics
 - Building visualizations
 - Perform ad-hoc analysis
 - · Get business insights using data
- Integrated with RDS, Aurora, Athena, Redshift, S3 ...

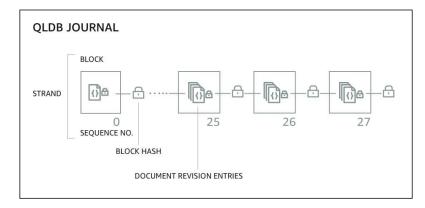
https://aws.amazon.com/quicksight/

DocumentDB



- Aurora is an "AWS-implementation" of PostgreSQL / MySQL ...
- DocumentDB is the same for MongoDB (which is a NoSQL database)
- MongoDB is used to store, query, and index JSON data
- Similar "deployment concepts" as Aurora
- Fully Managed, highly available with replication across 3 AZ
- DocumentDB storage automatically grows in increments of 10GB, up to 64 TB.
- · Automatically scales to workloads with millions of requests per seconds

Amazon Neptune


- Fully managed graph database
- A popular graph dataset would be asocial network
 - Users have friends
 - Posts have comments
 - · Comments have likes from users
 - Users share and like posts...
- Highly available across 3 AZ, with up to 15 read replicas
- Build and run applications working with highly connected datasets optimized for these complex and hard queries
- Can store up to billions of relations and query the graph with milliseconds latency
- Highly available with replications across multiple AZs
- Great for knowledge graphs (Wikipedia), fraud detection, recommendation engines, social networking

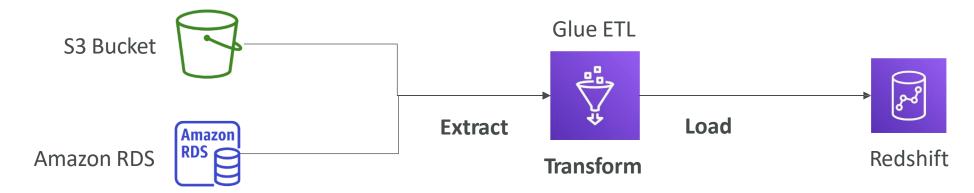
Amazon QLDB

- QLDB stands for "Quantum Ledger Database"
- A ledger is a book recording financial transactions
- Fully Managed, Serverless, High available, Replication across 3 AZ
- · Used to review history of all the changes made to your application data over time
- Immutable system: no entry can be removed or modified, cryptographically verifiable

- · 2-3x better performance than common ledger blockchain frameworks, manipulate data using SQL
- Difference with Amazon Managed Blockchain: no decentralization component, in accordance with financial regulation rules

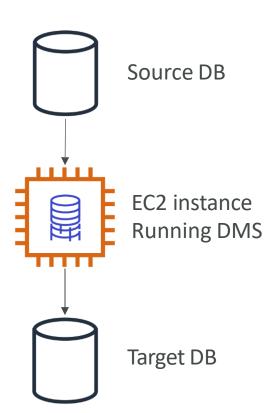
Amazon Managed Blockchain

- Blockchain makes it possible to build applications where multiple parties can execute transactions without the need for a trusted, central authority.
- Amazon Managed Blockchain is a managed service to:
 - Join public blockchain networks
 - Or create your own scalable private network
- Compatible with the frameworks Hyperledger Fabric & Ethereum



AWS Glue

- Managed extract, transform, and load (ETL) service
- Useful to prepare and transform data for analytics
- Fully serverless service



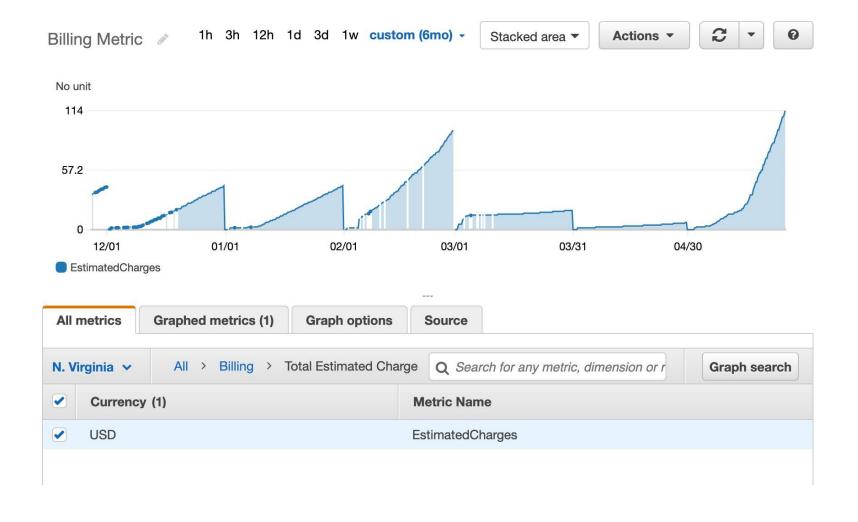
- Glue Data Catalog: catalog of datasets
 - can be used by Athena, Redshift, EMR

DMS- Database Migration Service

- Quickly and securely migrate databases to AWS, resilient, self healing
- The source database remains available during the migration
- Supports:
 - Homogeneous migrations: ex Oracle to Oracle
 - Heterogeneous migrations: ex Microsoft SQL Server to Aurora

Databases & Analytics Summary in AWS

- Relational Databases OLTP: RDS & Aurora (SQL)
- Differences between Multi-AZ, Read Replicas, Multi-Region
- In-memory Database: ElastiCache
- Key/Value Database: DynamoDB (serverless) & DAX (cache for DynamoDB)
- Warehouse OLAP: Redshift (SQL)
- Hadoop Cluster: EMR
- Athena: query data on Amazon S3 (serverless & SQL)
- QuickSight: dashboards on your data (serverless)
- DocumentDB: "Aurora for MongoDB" (JSON NoSQL database)
- Amazon QLDB: Financial Transactions Ledger (immutable journal, cryptographically verifiable)
- Amazon Managed Blockchain: managed Hyperledger Fabric & Ethereum blockchains
- Glue: Managed ETL (Extract Transform Load) and Data Catalog service
- Database Migration: DMS
- Neptune: graph database


Cloud Monitoring Section

Amazon CloudWatch Metrics

- CloudWatch provides metrics for every services in AWS
- Metric is a variable to monitor (CPUUtilization, NetworkIn...)
- Metrics have timestamps
- Can create CloudWatch dashboards of metrics

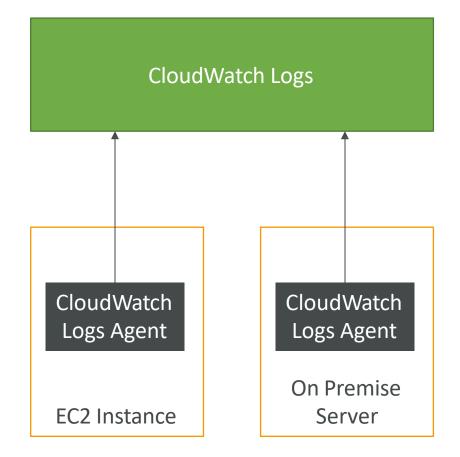
Example: CloudWatch Billing metric (us-east-1)

Important Metrics

- EC2 instances: CPU Utilization, Status Checks, Network (not RAM)
 - Default metrics every 5 minutes
 - Option for Detailed Monitoring (\$\$\$): metrics every 1 minute
- EBS volumes: Disk Read/Writes
- S3 buckets: BucketSizeBytes, NumberOfObjects, AllRequests
- Billing: Total Estimated Charge (only in us-east-1)
- Service Limits: how much you've been using a service API
- Custom metrics: push your own metrics

Amazon CloudWatch Alarms

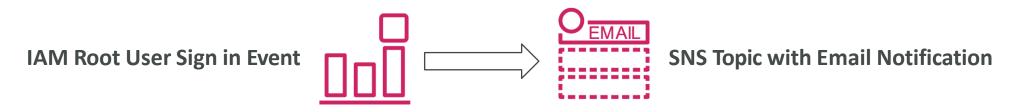
- Alarms are used to trigger notifications for any metric
- Alarms actions...
 - Auto Scaling: increase or decrease EC2 instances "desired" count
 - EC2 Actions: stop, terminate, reboot or recover an EC2 instance
 - SNS notifications: send anotification into an SNS topic
- Various options (sampling, %, max, min, etc...)
- Can choose the period on which to evaluate an alarm
- Example: create a billing alarm on the CloudWatch Billing metric
- Alarm States: OK. INSUFFICIENT_DATA, ALARM


Amazon CloudWatch Logs

- CloudWatch Logs can collect log from:
 - Elastic Beanstalk: collection of logs from application
 - ECS collection from containers
 - AWS Lambda: collection from function logs
 - CloudTrail based on filter
 - CloudWatch log agents: on EC2 machines or on-premises servers
 - Route53: Log DNS queries
- Enables real-time monitoring of logs
- Adjustable CloudWatch Logs retention

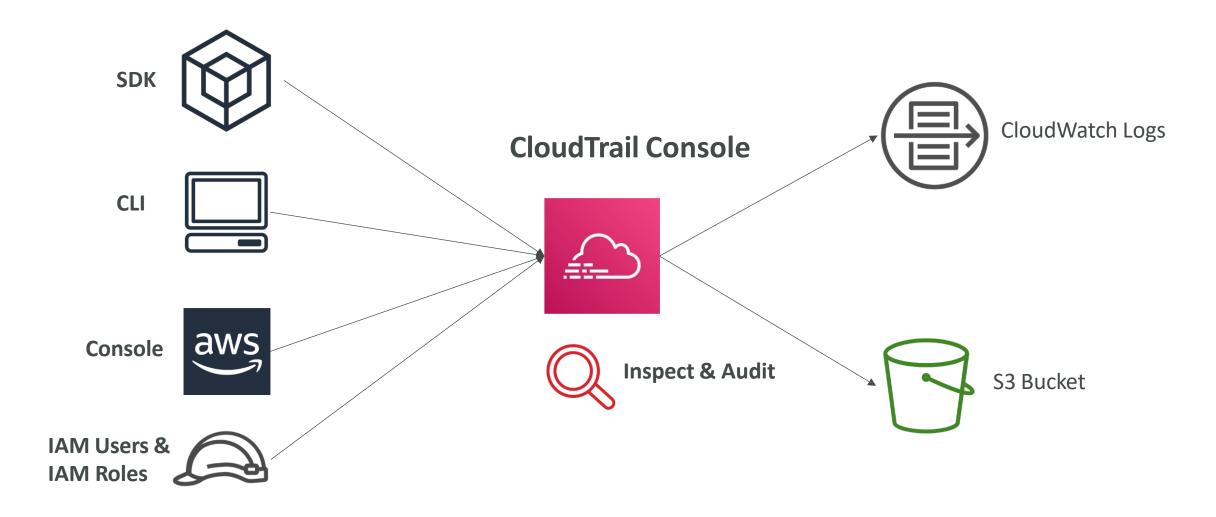
CloudWatch Logs for EC2

- By default, no logs from your EC2 instance will go to CloudWatch
- You need to run a CloudWatch agent on EC2 to push the log files you want
- Make sure IAM permissions are correct
- The CloudWatch log agent can be setup on-premises too


Amazon EventBridge (formerly CloudWatch Events)

• Schedule: Cron jobs (scheduled scripts)

Event Pattern: Event rules to react to a service doing something


• Trigger Lambda functions, send SQS/SNS messages...

AWS CloudTrail

- Provides governance, compliance and audit for your AWS Account
- CloudTrail is enabled by default!
- Get an history of events / API calls made within your AWS Account by:
 - Console
 - SDK
 - CLI
 - AWS Services
- Can put logs from CloudTrail into CloudWatch Logs or S3
- A trail can be applied to All Regions (default) or a single Region.
- If aresource is deleted in AWS, investigate CloudTrail first!

CloudTrail Diagram



AWS X-Ray

- Debugging in Production, the good old way:
 - Test locally
 - Add log statements everywhere
 - Re-deploy in production
- Log formats differ across applications and log analysis is hard.
- Debugging: one big monolith "easy", distributed services "hard"
- No common views of your entire architecture
- Enter... AWS X-Ray!

AWS X-Ray Visual analysis of our applications

AWSX-Ray advantages

- Troubleshooting performance (bottlenecks)
- Understand dependencies in a microservice architecture
- Pinpoint service issues
- Review request behavior
- Find errors and exceptions
- Are we meeting time SLA?
- Where I am throttled?
- Identify users that are impacted

AWS Status - Service Health Dashboard

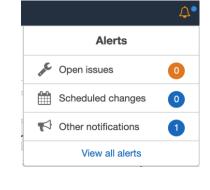
- Shows all regions, all services health
- Shows historical information for each day
- Has an RSS feed you can subscribe to
- https://status.aws.amazon.com/

Current Status - May 26, 2020 PDT

Amazon Web Services publishes our most up-to-the-minute information on service availability in the table below. Check back here any time to get current status information, or subscribe to an RSS feed to be notified of interruptions to each individual service. If you are experiencing a real-time, operational issue with one of our services that is not described below, please inform us by clicking on the "Contact Us" link to submit a service issue report. All dates and times are Pacific Time (PST/PDT).

North America	South America	Europe	Africa	Asia Pacific	Middle East	Contact U	
Recent Events		RSS					
No recent eve	ents.						
Remaining Services	•			Details		RSS	
Alexa for Bus	iness (N. Virginia)			Service is operatir	3		
 Amazon API Gateway (Montreal) 				Service is operatir	3		
Amazon API (Amazon API Gateway (N. California)				Service is operating normally		
Amazon API (Amazon API Gateway (N. Virginia)			Service is operatir	a		
Amazon API (Amazon API Gateway (Ohio)			Service is operatir	a		
Amazon API (Amazon API Gateway (Oregon)			Service is operatir	<u>a</u>		
Amazon AppS	Amazon AppStream 2.0 (N. Virginia)			Service is operatir	<u>a</u>		
Amazon App8	Amazon AppStream 2.0 (Oregon)			Service is operating normally		<u>a</u>	
Amazon Athe	Amazon Athena (Montreal)			Service is operatir	3		

AWS Personal Health Dashboard



- AWS Personal Health Dashboard provides alerts and remediation guidance when AWS is experiencing events that may impact you.
- While the Service Health Dashboard displays the general status of AWS services, Personal Health Dashboard gives you apersonalized view into the performance and availability of the AWS services underlying your AWS resources.
- The dashboard displays relevant and timely information to help you manage events in progress and provides proactive notification to help you plan for scheduled activities.

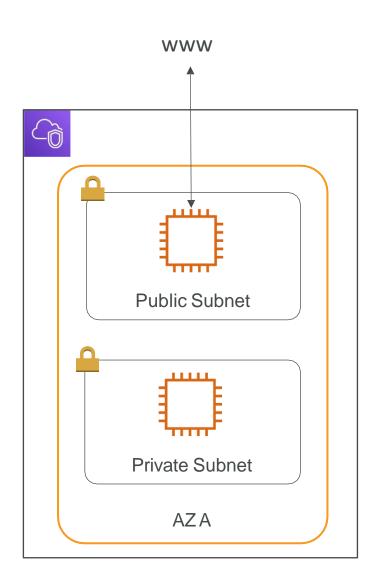
AWS Personal Health Dashboard

- Global service https://phd.aws.amazon.com/
- Shows how AWS outages directly impact you & your AWS resources
- Alert, remediation, proactive, scheduled activities

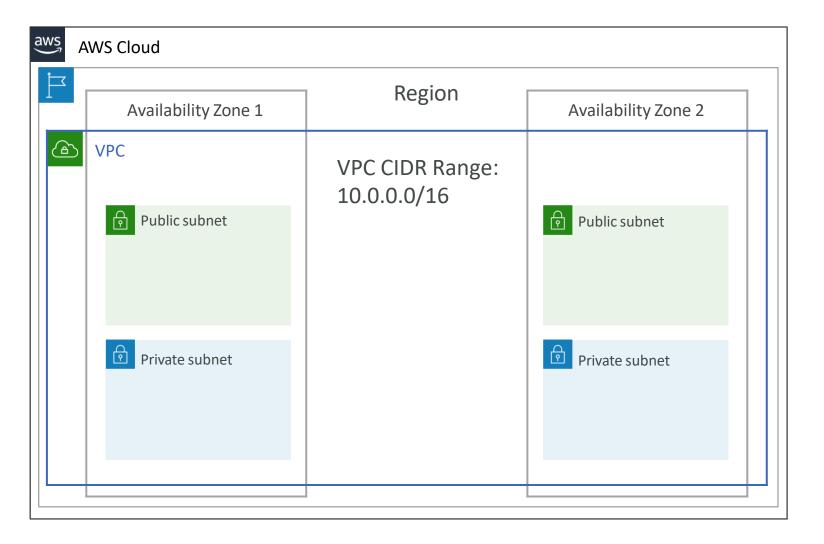
ven	t log						\mathcal{Z}				
T	▼ Add filter										
	Event	Status	Region/AZ 1	Start time	Last update time	Affected resources	Event category				
0	ElasticContainerRegistry operational issue	Closed	us-west-2	May 22, 2020 at 11:48:49 PM U	May 22, 2020 at 11:49:31 PM U	-	J Issue				
)	CodeBuild operational notification	-	-	May 21, 2020 at 11:20:00 PM U	May 21, 2020 at 11:35:26 PM U	1 entity	Notification				
0	ElasticsearchService operational issue	Closed	us-east-1	May 21, 2020 at 3:44:30 PM UT	May 21, 2020 at 4:38:20 PM UT	-	, Ssue				
\supset	Batch operational issue	Closed	us-west-1	May 10, 2020 at 3:38:49 AM UT	May 10, 2020 at 5:55:46 AM UT	-	J Issue				
0	ElasticContainerService operational issue	Closed	us-west-1	May 10, 2020 at 3:31:30 AM UT	May 10, 2020 at 5:52:25 AM UT	-	J Issue				
0	CloudFormation operational issue	Closed	us-west-2	April 30, 2020 at 9:47:10 PM UT	April 30, 2020 at 11:11:31 PM U	-	J € Issue				
\bigcirc	CloudFront operational issue	Closed	-	April 21, 2020 at 11:57:30 PM U	April 22, 2020 at 12:28:15 AM U	-	, Issue				
							12				

Monitoring Summary

- CloudWatch:
 - Metrics: monitor the performance of AWS services and billing metrics
 - Alarms: automate notification, perform EC2 action, notify to SNS based on metric
 - Logs: collect log files from EC2 instances, servers, Lambda functions...
 - Events (or EventBridge): react to events in AWS, or trigger arule on aschedule
- CloudTrail: audit API calls made within your AWS account
- CloudTrail Insights: automated analysis of your CloudTrail Events
- X-Ray: trace requests made through your distributed applications
- Service Health Dashboard: status of all AWS services across all regions
- Personal Health Dashboard: AWS events that impact your infrastructure
- Amazon CodeGuru: automated code reviews and application performance recommendations

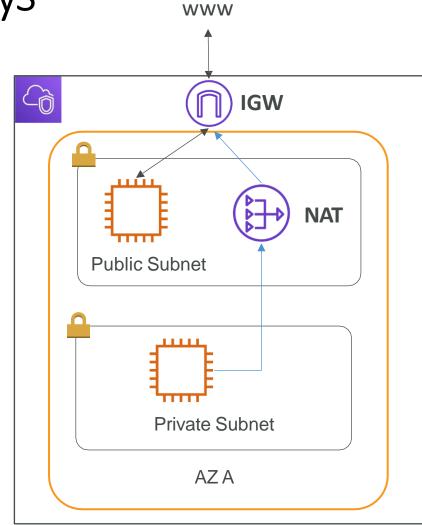

VPC Section

VPC - Crash Course


- VPC is something you should know in depth for the AWS Certified Solutions Architect Associate & AWS Certified SysOps Administrator
- At the AWS Certified Cloud Practitioner Level, you should know about:
 - VPC, Subnets, Internet Gateways & NAT Gateways
 - Security Groups, Network ACL (NACL), VPC Flow Logs
 - VPC Peering, VPC Endpoints
 - Site to Site VPN & Direct Connect
 - Transit Gateway
- I will just give you an overview, less than 1 or 2 questions at your exam.
- We'll have alook at the "default VPC" (created by default by AWS for you)
- There is asummary lecture at the end. It's okay if you don't understand it all

VPC & Subnets Primer

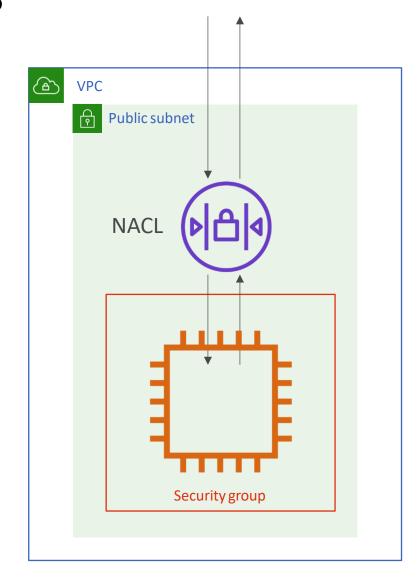
- VPC Virtual Private Cloud: private network to deploy your resources (regional resource)
- Subnets allow you to partition your network inside your VPC (Availability Zone resource)
- A public subnet is a subnet that is accessible from the internet
- A private subnet is a subnet that is not accessible from the internet
- To define access to the internet and between subnets, we use Route Tables.



VPC Diagram

Internet Gateway & NAT Gateways

- Internet Gateways helps our VPC instances connect with the internet
- Public Subnets have a route to the internet gateway.
- NAT Gateways (AWS-managed) & NAT Instances (self-managed) allow your instances in your Private Subnets to access the internet while remaining private


Network ACL & Security Groups

NACL (Network ACL)

- A firewall which controls traffic from and to subnet
- Can have ALLOW and DENY rules
- Are attached at the Subnet level
- Rules only include IP addresses

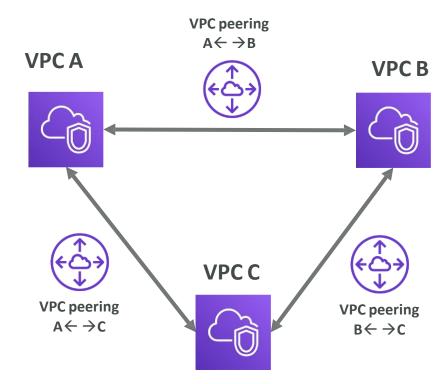
Security Groups

- A firewall that controls traffic to and from an ENI / an EC2 Instance
- Can have only ALLOW rules
- Rules include IP addresses and other security groups

Network ACLs vs Security Groups

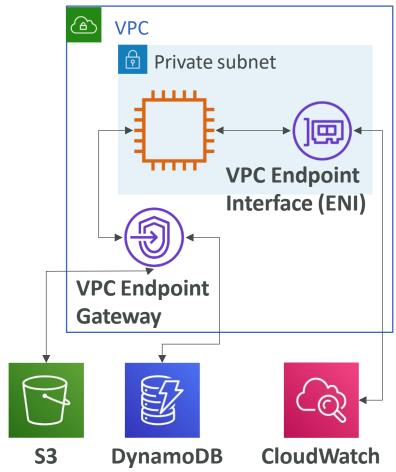
Security Group	Network ACL		
Operates at the instance level	Operates at the subnet level		
Supports allow rules only	Supports allow rules and deny rules		
Is stateful: Return traffic is automatically allowed, regardless of any rules	Is stateless: Return traffic must be explicitly allowed by rules		
We evaluate all rules before deciding whether to allow traffic	We process rules in number order when deciding whether to allow traffic		
Applies to an instance only if someone specifies the security group when launching the instance, or associates the security group with the instance later on	Automatically applies to all instances in the subnets it's associated with (therefore, you don't have to rely on users to specify the security group)		

https://docs.aws.amazon.com/vpc/latest/userguide/VPC Security.html#VPC Security Comparison


VPC Flow Logs

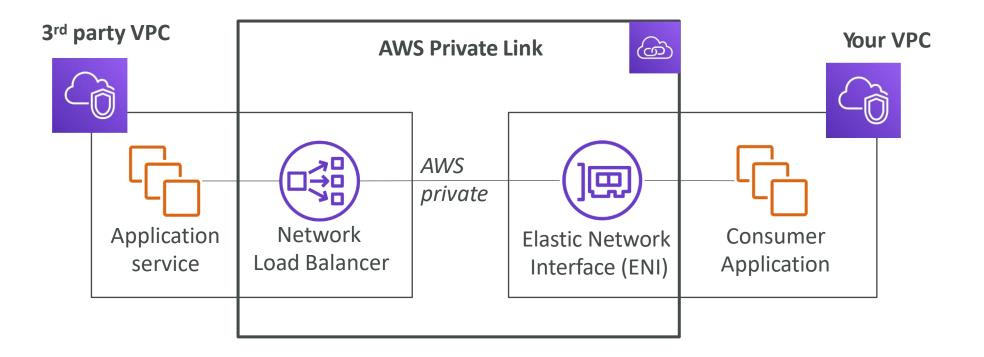
- Capture information about IP traffic going into your interfaces:
 - VPC Flow Logs
 - Subnet Flow Logs
 - Elastic Network Interface Flow Logs
- Helps to monitor & troubleshoot connectivity issues. Example:
 - Subnets to internet
 - Subnets to subnets
 - Internet to subnets
- Captures network information from AWS managed interfaces too: Elastic Load Balancers, ElastiCache, RDS, Aurora, etc...
- VPC Flow logs data can go to S3/ CloudWatch Logs

VPC Reering

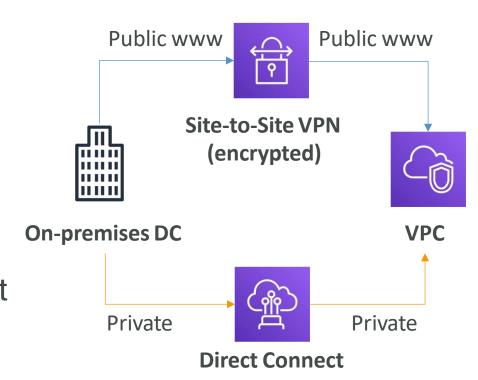

- Connect two VPC, privately using AWS network
- Make them behave as if they were in the same network
- Must not have overlapping CIDR (IP address range)
- VPC Peering connection is not transitive (must be established for each VPC that need to communicate with one another)

VPC Endpoints

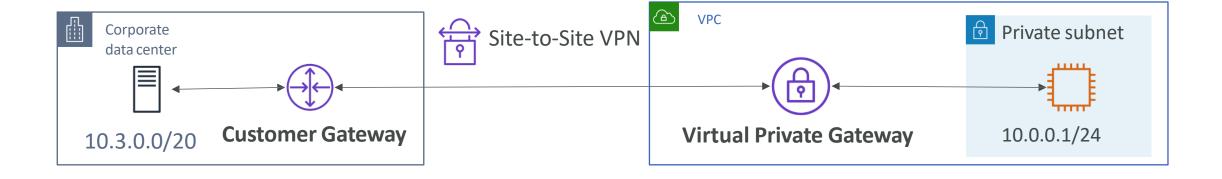
- Endpoints allow you to connect to AWS Services using a private network instead of the public www network
- This gives you enhanced security and lower latency to access AWS services
- VPC Endpoint Gateway: S3 & DynamoDB
- VPC Endpoint Interface: the rest



AWS PrivateLink (VPC Endpoint Services)

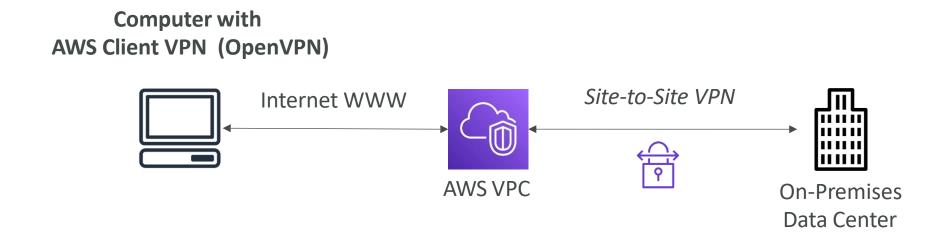


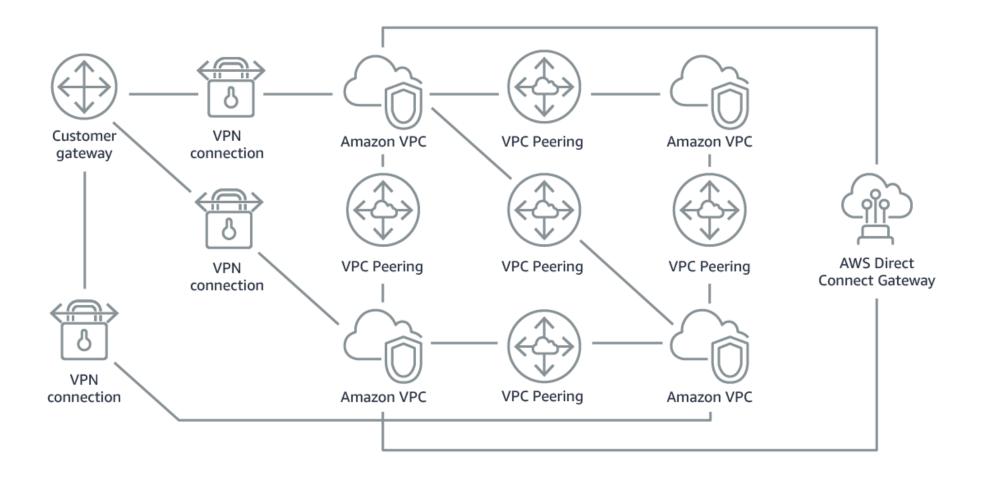
- Most secure & scalable way to expose a service to 1000s of VPCs
- Does not require VPC peering, internet gateway, NAT, route tables...
- Requires a network load balancer (Service VPC) and ENI (Customer VPC)


Site to Site VPN & Direct Connect

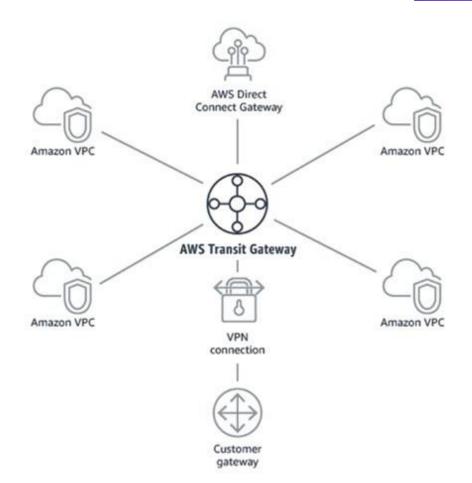
- Site to Site VPN
 - Connect an on-premises VPN to AWS
 - The connection is automatically encrypted
 - Goes over the <u>public internet</u>
- Direct Connect (DX)
 - Establish a physical connection between on-premises and AWS
 - The connection is private, secure and fast
 - Goes over a <u>private network</u>
 - · Takes at least a month to establish

Site-to-Site VPN


- On-premises: must use a Customer Gateway (CGW)
- AWS: must use a Virtual Private Gateway (VGW)


AWSClient VPN

- Connect from your computer using OpenVPN to your private network in AWS and on-premises
- Allow you to connect to your EC2 instances over a private IP (just asif you were in the private VPC network)
- Goes over <u>public Internet</u>



Network topologies can become complicated

Transit Gateway

- For having transitive peering between thousands of VPC and on-premises, hub-and-spoke (star) connection
- One single Gateway to provide this functionality
- Works with Direct Connect Gateway, VPN connections

VPC Closing Comments

- VPC: Virtual Private Cloud
- Subnets: Tied to an AZ, network partition of the VPC
- Internet Gateway: at the VPC level, provide Internet Access
- NAT Gateway / Instances: give internet access to private subnets
- NACL: Stateless, subnet rules for inbound and outbound
- Security Groups: Stateful, operate at the EC2 instance level or ENI
- VPC Peering: Connect two VPC with non overlapping IP ranges, nontransitive

VPC Closing Comments

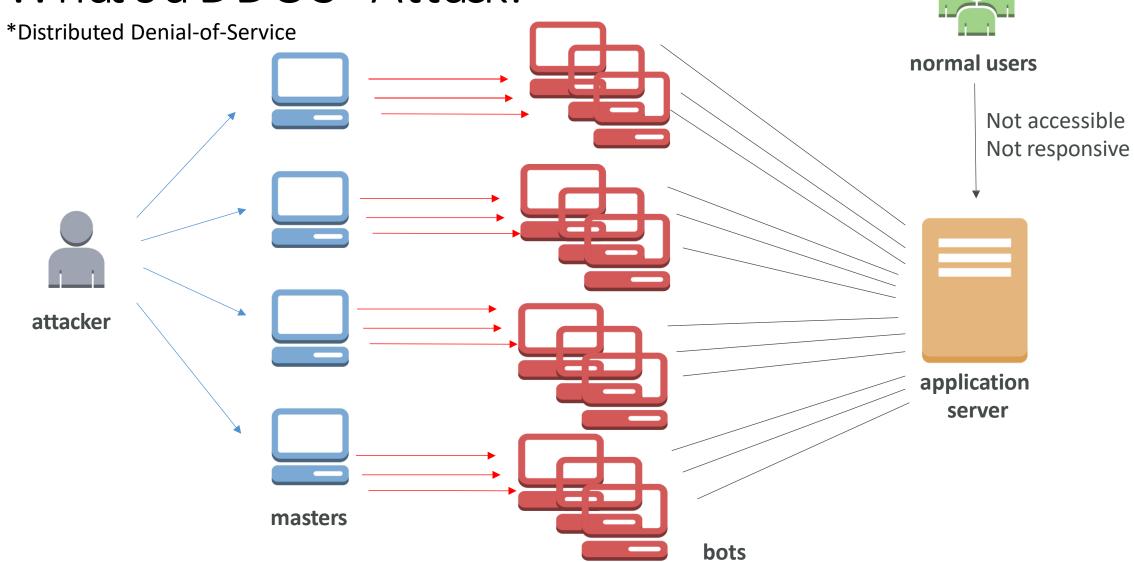
- VPC Endpoints: Provide private access to AWS Services within VPC
- PrivateLink: Privately connect to aservice in a3rd party VPC
- VPC Flow Logs: network traffic logs
- Site to Site VPN: VPN over public internet between on-premises DC and AWS
- Client VPN: OpenVPN connection from your computer into your VPC
- Direct Connect: direct private connection to AWS
- Transit Gateway: Connect thousands of VPC and on-premises networks together

Security & Compliance Section

AWSShared Responsibility Model

- AWS responsibility Security of the Cloud
 - Protecting infrastructure (hardware, software, facilities, and networking) that runs all the AWS services
 - Managed services like S3, DynamoDB, RDS, etc.
- Customer responsibility Security in the Cloud
 - For EC2 instance, customer is responsible for management of the guest OS (including security patches and updates), firewall & network configuration, IAM
 - Encrypting application data
- Shared controls:
 - Patch Management, Configuration Management, Awareness & Training

Example, for RDS


- AWS responsibility:
 - Manage the underlying EC2 instance, disable SSH access
 - Automated DB patching
 - Automated OS patching
 - Audit the underlying instance and disks & guarantee it functions
- Your responsibility:
 - Check the ports / IP / security group inbound rules in DB's SG
 - In-database user creation and permissions
 - Creating adatabase with or without public access
 - Ensure parameter groups or DB is configured to only allow SSL connections
 - Database encryption setting

Example, for S3

- AWS responsibility:
 - Guarantee you get unlimited storage
 - Guarantee you get encryption
 - Ensure separation of the data between different customers
 - Ensure AWS employees can't access your data
- Your responsibility:
 - Bucket configuration
 - Bucket policy / public setting
 - IAM user and roles
 - Enabling encryption

What's a DDOS* Attack?

DDOS Protection on AWS

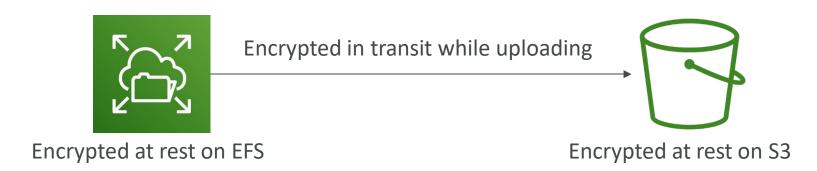
- AWS Shield Standard: protects against DDOS attack for your website and applications, for all customers at no additional costs
- AWS Shield Advanced: 24/7 premium DDoS protection
- AWSWAF: Filter specific requests based on rules
- CloudFront and Route 53:
 - Availability protection using global edge network
 - · Combined with AWS Shield, provides attack mitigation at the edge
- Be ready to scale leverage AWS Auto Scaling

AWS Shield

• AWS Shield Standard:

- Free service that is activated for every AWS customer
- Provides protection from attacks such as SYN/UDP Floods, Reflection attacks and other layer 3/layer 4 attacks

• AWS Shield Advanced:


- Optional DDoS mitigation service (\$3,000 per month per organization)
- Protect against more sophisticated attack on Amazon EC2, Eastic Load Balancing (ELB), Amazon CloudFront, AWS Global Accelerator, and Route 53
- 24/7 access to AWSDDoS response team (DRP)
- Protect against higher fees during usage spikes due to DDoS

AWSWAF – Web Application Firewall

- Protects your web applications from common web exploits (Layer 7)
- Layer 7 is HTTP (vs Layer 4 isTCP)
- Deploy on Application Load Balancer, API Gateway, CloudFront
- Define Web ACL (Web Access Control List):
 - Rules can include IP addresses, HTTP headers, HTTP body, or URI strings
 - Protects from common attack SQL injection and Cross-Site Scripting (XSS)
 - Size constraints, geo-match (block countries)
 - Rate-based rules (to count occurrences of events) for DDoS protection

Data at rest vs. Data in transit

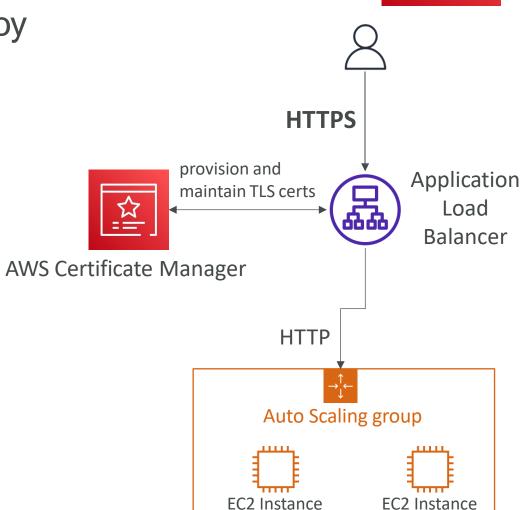
- At rest: data stored or archived on a device
 - On ahard disk, on a RDS instance, in S3 Glacier Deep Archive, etc.
- In transit (in motion): data being moved from one location to another
 - Transfer from on-premises to AWS, EC2 to DynamoDB, etc.
 - Means data transferred on the network
- We want to encrypt data in both states to protect it!
- For this we leverage encryption keys

AWSKMS (Key Management Service)

- Anytime you hear "encryption" for an AWS service, it's most likely KMS
- KMS = AWS manages the encryption keys for us
- Encryption Opt-in:
 - EBS volumes: encrypt volumes
 - S3 buckets: Server-side encryption of objects
 - Redshift database: encryption of data
 - RDS database: encryption of data
 - ES drives: encryption of data
- Encryption Automatically enabled:
 - CloudTrail Logs
 - S3 Glacier
 - Storage Gateway

CloudH9M

- KMS => AWS manages the software for encryption
- CloudHSM => AWS provisions encryption hardware
- Dedicated Hardware (HSM = Hardware Security Module)
- You manage your own encryption keys entirely (not AWS)
- HSM device is tamper resistant, FIPS 140-2 Level 3 compliance


Sample HSM device

Types of Customer Master Keys: CMK

- Customer Managed CMK:
 - · Create, manage and used by the customer, can enable or disable
 - Possibility of rotation policy (new key generated every year, old key preserved)
 - Possibility to bring-your-own-key
- AWS managed CMK:
 - Created, managed and used on the customer's behalf by AWS
 - Used by AWS services (aws/s3, aws/ebs, aws/redshift)
- AWS owned CMK:
 - · Collection of CMKs that an AWS service owns and manages to use in multiple accounts
 - AWS can use those to protect resources in your account (but you can't view the keys)
- CloudHSM Keys (custom keystore):
 - · Keys generated from your own CloudHSM hardware device
 - Cryptographic operations are performed within the CloudHSM cluster

AWSCertificate Manager (ACM)

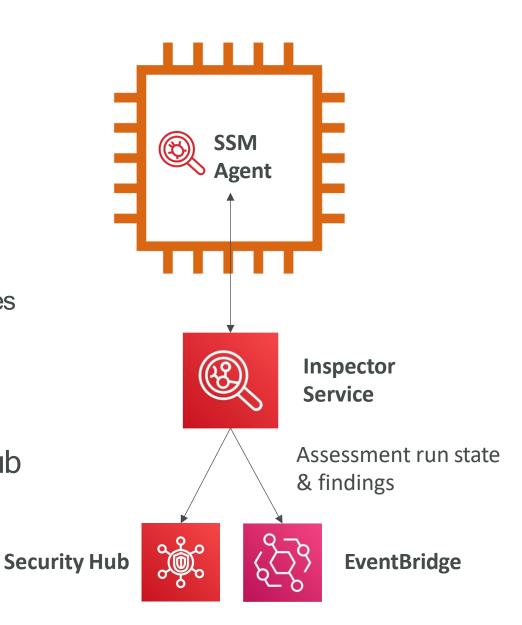
- Let's you easily provision, manage, and deploy SSL/TLS Certificates
- Used to provide in-flight encryption for websites (HTTPS)
- Supports both public and private TLS certificates
- Free of charge for publicTLS certificates
- Automatic TLS certificate renewal
- Integrations with (load TLS certificates on)
 - Elastic Load Balancers
 - CloudFront Distributions
 - APIs on API Gateway

AWS Secrets Manager

- Newer service, meant for storing secrets
- Capability to force rotation of secrets every X days
- Automate generation of secrets on rotation (uses Lambda)
- Integration with Amazon RDS (MySQL, PostgreSQL, Aurora)
- Secrets are encrypted using KMS
- Mostly meant for RDS integration

AWS Artifact (not really a service)

- Portal that provides customers with on-demand access to AWS compliance documentation and AWS agreements
- Artifact Reports Allows you to download AWS security and compliance documents from third-party auditors, like AWS ISO certifications, Payment Card Industry (PCI), and System and Organization Control (SOC) reports
- Artifact Agreements Allows you to review, accept, and track the status of AWS agreements such as the Business Associate Addendum (BAA) or the Health Insurance Portability and Accountability Act (HIPAA) for an individual account or in your organization
- Can be used to support internal audit or compliance


Amazon Guard Duty

- Intelligent Threat discovery to Protect AWS Account
- Uses Machine Learning algorithms, anomaly detection, 3rd party data
- One click to enable (30 days trial), no need to install software
- Input data includes:
 - CloudTrail Events Logs unusual API calls, unauthorized deployments
 - CloudTrail Management Events create VPC subnet, create trail, ...
 - CloudTrail S3 Data Events get object, list objects, delete object, ...
 - VPC How Logs unusual internal traffic, unusual IP address
 - DNS Logs compromised EC2 instances sending encoded data within DNS queries
 - Kubernetes Audit Logs suspicious activities and potential EKScluster compromises
- Can setup CloudWatch Event rules to be notified in case of findings
- CloudWatch Events rules can target AWS Lambda or SNS
- Can protect against CryptoCurrency attacks (has a dedicated "finding" for it)

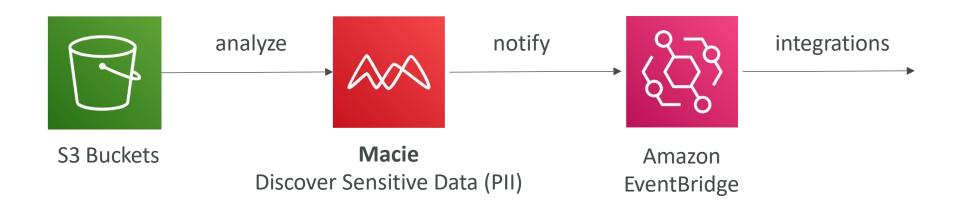
Amazon Inspector

- Automated Security Assessments
- For EC2 instances
 - Leveraging the AWS System Manager (SSM) agent
 - Analyze against unintended network accessibility
 - Analyze the running OS against known vulnerabilities
- For Containers push to Amazon ECR
 - Assessment of containers as they are pushed
- Reporting & integration with AWS Security Hub
- Send findings to Amazon Event Bridge

What does AWS Inspector evaluate?

- Remember: only for EC2 instances and container infrastructure
- Continuous scanning of the infrastructure, only when needed
- Package vulnerabilities (EC2 & ECR) database of CVE
- Network reachability (EC2)
- A risk score is associated with all vulnerabilities for prioritization

AWS Config



- Helps with auditing and recording compliance of your AWS resources
- Helps record configurations and changes over time
- Possibility of storing the configuration data into S3 (analyzed by Athena)
- Questions that can be solved by AWS Config.
 - Is there unrestricted SSHaccess to my security groups?
 - Do my buckets have any public access?
 - How has my ALB configuration changed over time?
- You can receive alerts (SNS notifications) for any changes
- AWS Config is aper-region service
- Can be aggregated across regions and accounts

AWS Macie

- Amazon Macie is afully managed data security and data privacy service that uses machine learning and pattern matching to discover and protect your sensitive data in AWS.
- Macie helps identify and alert you to sensitive data, such as personally identifiable information (PII)

AWS Security Hub

- Central security tool to manage security across several AWS accounts and automate security checks
- Integrated dashboards showing current security and compliance status to quickly take actions
- Automatically aggregates alerts in predefined or personal findings formats from various AWS services & AWS partner tools:
 - GuardDuty
 - Inspector
 - Macie
 - IAM Access Analyzer
 - AWS Systems Manager
 - AWS Firewall Manager
 - AWS Partner Network Solutions
- Must first enable the AWS Config Service

Amazon Detective

- GuardDuty, Macie, and Security Hub are used to identify potential security issues, or findings
- Sometimes security findings require deeper analysis to isolate the root cause and take action it's a complex process
- Amazon Detective analyzes, investigates, and quickly identifies the root cause of security issues or suspicious activities (using ML and graphs)
- Automatically collects and processes events from VPC Flow Logs, CloudTrail, GuardDuty and create a unified view
- Produces visualizations with details and context to get to the root cause

Root user privileges

- Root user = Account Owner (created when the account is created)
- Has complete access to all AWS services and resources
- Lock away your AWS account root user access keys!
- · Do not use the root account for everyday tasks, even administrative tasks
- Actions that can be performed only by the root user:
 - Change account settings (account name, email address, root user password, root user access keys)
 - · View certain tax invoices
 - Close your AWS account
 - Restore IAM user permissions
 - Change or cancel your AWS Support plan
 - Register as a seller in the Reserved Instance Marketplace
 - Configure an Amazon S3 bucket to enable MFA
 - Edit or delete an Amazon S3 bucket policy that includes an invalid VPC ID or VPC endpoint ID
 - Sign up for GovCloud

Section Summary: Security & Compliance

- Shared Responsibility on AWS
- Shield: Automatic DDoS Protection + 24/7 support for advanced
- WAF: Firewall to filter incoming requests based on rules
- KMS: Encryption keys managed by AWS
- CloudHSM: Hardware encryption, we manage encryption keys
- AWS Certificate Manager: provision, manage, and deploy SSL/TLS Certificates
- Artifact: Get access to compliance reports such as PCI, ISO, etc...
- GuardDuty: Find malicious behavior with VPC, DNS & CloudTrail Logs
- Inspector: For EC2 only, install agent and find vulnerabilities

Section Summary: Security & Compliance

- Config: Track config changes and compliance against rules
- Macie: Find sensitive data (ex: Pll data) in Amazon S3buckets
- CloudTrail:Track API calls made by users within account
- AWS Security Hub: gather security findings from multiple AWS accounts
- Amazon Detective: find the root cause of security issues or suspicious activities
- AWS Abuse: Report AWS resources used for abusive or illegal purposes
- Root user privileges:
 - Change account settings
 - Close your AWS account
 - Change or cancel your AWS Support plan
 - Register as a seller in the Reserved Instance Marketplace

OtherServices

Amazon Transcribe

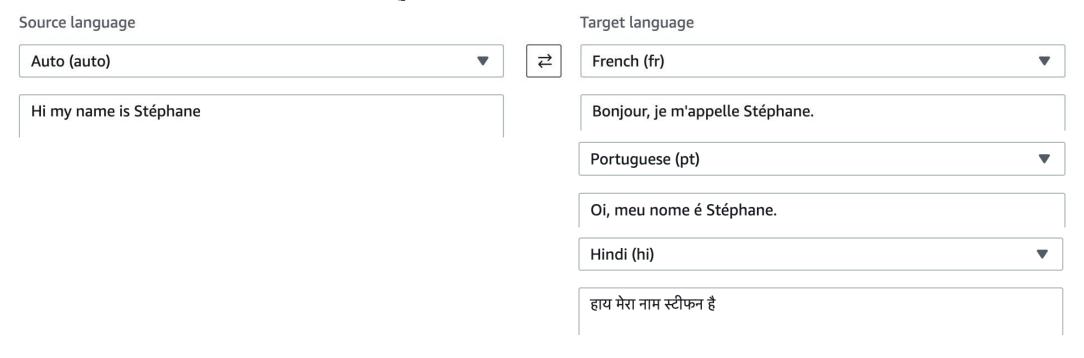
- Automatically convert speech to text
- Uses adeep learning process called automatic speech recognition (ASR) to convert speech to text quickly and accurately
- Automatically remove Personally Identifiable Information (PII) using Redaction
- Supports Automatic Language Identification for multi-lingual audio
- Use cases:
 - transcribe customer service calls
 - automate closed captioning and subtitling
 - · generate metadata for media assets to create a fully searchable archive

"Hello my name is Stéphane.
I hope you're enjoying the course!

Amazon Polly

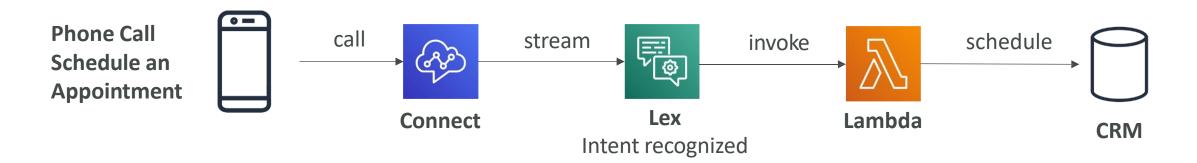
- Turn text into lifelike speech using deep learning
- Allowing you to create applications that talk

Hi! My name is Stéphane and this is a demo of Amazon Polly



Amazon Translate

- Natural and accurate language translation
- Amazon Translate allows you to localize content such as websites and applications - for international users, and to easily translate large volumes of text efficiently.



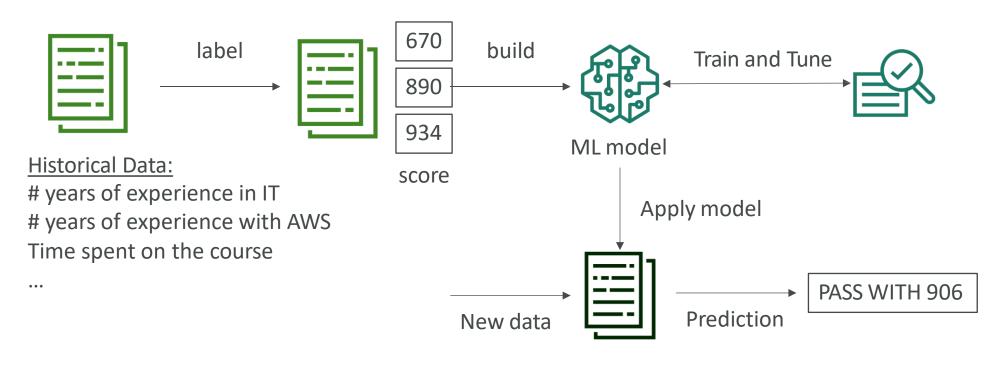
Amazon Lex & Connect

- Amazon Lex: (same technology that powers Alexa)
 - Automatic Speech Recognition (ASR) to convert speech to text
 - Natural Language Understanding to recognize the intent of text, callers
 - Helps build chatbots, call center bots

• Amazon Connect:

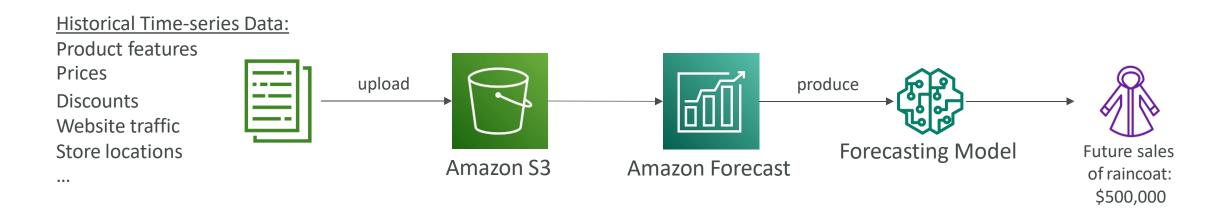
- Receive calls, create contact flows, cloud-based virtual contact center
- Can integrate with other CRM systems or AWS
- No upfront payments, 80% cheaper than traditional contact center solutions

Amazon Comprehend

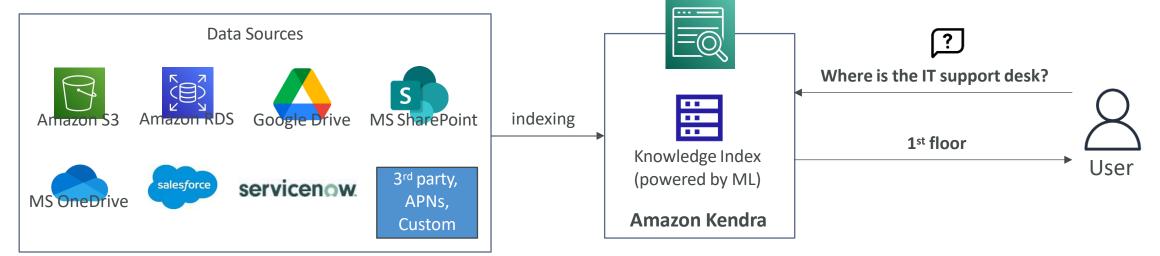


- For Natural Language Processing NLP
- Fully managed and serverless service
- · Uses machine learning to find insights and relationships in text
 - Language of the text
 - Extracts key phrases, places, people, brands, or events
 - Understands how positive or negative the text is
 - Analyzes text using tokenization and parts of speech
 - Automatically organizes a collection of text files by topic
- Sample use cases:
 - · analyze customer interactions (emails) to find what leads to a positive or negative experience
 - Create and groups articles by topics that Comprehend will uncover

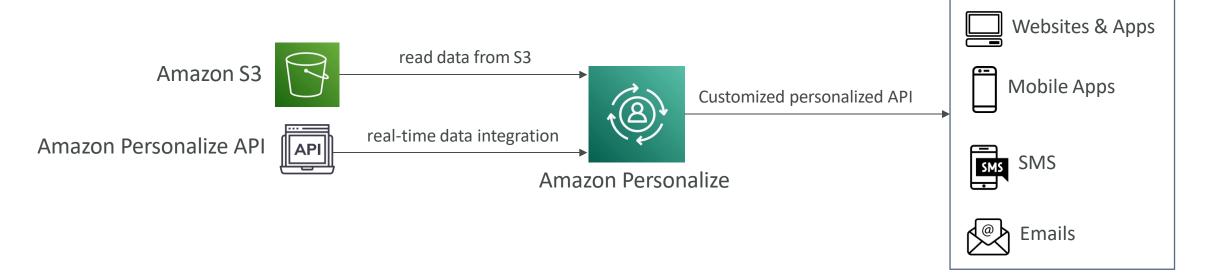
Amazon SageMaker


- Fully managed service for developers / data scientists to build ML models
- Typically, difficult to do all the processes in one place + provision servers
- Machine learning process (simplified): predicting your exam score

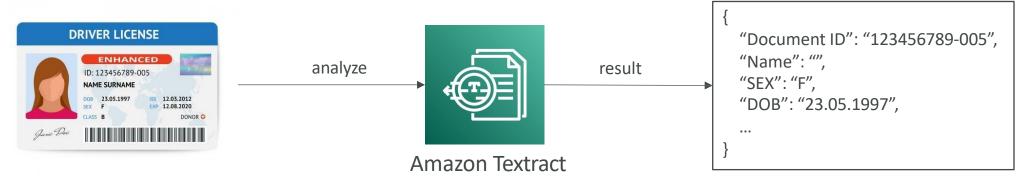
Amazon Forecast


- Fully managed service that uses ML to deliver highly accurate forecasts
- Example: predict the future sales of a raincoat
- 50% more accurate than looking at the data itself
- Reduce forecasting time from months to hours
- Use cases: Product Demand Planning, Financial Planning, Resource Planning, ...

Amazon Kendra


- Fully managed document search service powered by Machine Learning
- Extract answers from within a document (text, pdf, HTML, PowerPoint, MS Word, FAQs...)
- Natural language search capabilities
- Learn from user interactions/feedback to promote preferred results (Incremental Learning)
- Ability to manually fine-tune search results (importance of data, freshness, custom, ...)

Amazon Personalize


- Fully managed ML-service to build apps with real-time personalized recommendations
- Example: personalized product recommendations/re-ranking, customized direct marketing
 - Example: User bought gardening tools, provide recommendations on the next one to buy
- Same technology used by Amazon.com
- Integrates into existing websites, applications, SMS, email marketing systems, ...
- Implement in days, not months (you don't need to build, train, and deploy ML solutions)
- Use cases: retail stores, media and entertainment...

Amazon Textract

 Automatically extracts text, handwriting, and data from any scanned documents using AI and ML

- Extract data from forms and tables
- Read and process any type of document (PDFs, images, ...)
- Use cases:
 - Financial Services (e.g., invoices, financial reports)
 - Healthcare (e.g., medical records, insurance claims)
 - Public Sector (e.g., tax forms, ID documents, passports)

AWS Machine Learning - Summary

- Rekognition: face detection, labeling, celebrity recognition
- Transcribe: audio to text (ex: subtitles)
- Polly: text to audio
- Translate: translations
- Lex: build conversational bots chatbots
- Connect: cloud contact center
- Comprehend: natural language processing
- SageMaker: machine learning for every developer and data scientist
- Forecast: build highly accurate forecasts
- Kendra: ML-powered search engine
- Personalize: real-time personalized recommendations
- Textract: detect text and data in documents

Billing & Support Section

Pricing Models in AWS

- AWS has 4 pricing models:
- Payasyou go: pay for what you use, remain agile, responsive, meet scale demands
- Save when you reserve: minimize risks, predictably manage budgets, comply with long-terms requirements
 - Reservations are available for EC2 Reserved Instances, DynamoDB Reserved Capacity, ElastiCache Reserved Nodes, RDS Reserved Instance, Redshift Reserved Nodes
- Pay less by using more: volume-based discounts
- Pay less as AWS grows

Free services & free tier in AWS

- IAM
- VPC
- Consolidated Billing
- Bastic Beanstalk
- CloudFormation
- **1** You do pay for the resources created
- Auto Scaling Groups
- Free Tier: https://aws.amazon.com/free/
 - EC2 t2.micro instance for a year
 - S3, ELB, AWS Data transfer

Compute Pricing – EC2

- Only charged for what you use
- Number of instances
- Instance configuration:
 - Physical capacity
 - Region
 - OS and software
 - Instance type
 - Instance size
- ELB running time and amount of data processed
- Detailed monitoring

Compute Pricing – EC2

- On-demand instances:
 - Minimum of 60s
 - Pay per second (Linux/Windows) or per hour (other)
- Reserved instances:
 - Up to 75% discount compared to On-demand on hourly rate
 - 1- or 3-years commitment
 - All upfront, partial upfront, no upfront
- Spot instances:
 - Up to 90% discount compared to On-demand on hourly rate
 - Bid for unused capacity
- Dedicated Host:
 - On-demand
 - Reservation for 1 year or 3 years commitment
- Savings plans as an alternative to save on sustained usage

Compute Pricing – Lambda & ECS

- Lambda:
 - Pay per call
 - Pay per duration

- ECS:
 - EC2 Launch Type Model: No additional fees, you pay for AWS resources stored and created in your application

- Fargate:
 - Fargate Launch Type Model: Payfor vCPU and memory resources allocated to your applications in your containers

Storage Pricing – S3

- Storage dass: S3Standard, S3Infrequent Access, S3One-Zone IA, S3 Intelligent Tiering, S3Glacier and S3Glacier Deep Archive
- Number and size of objects: Price can be tiered (based on volume)
- Number and type of requests
- Data transfer OUT of the S3 region
- S3 Transfer Acceleration
- Lifecycle transitions
- Similar service: #\$ (pay per use, has infrequent access & lifecycle rules)

Storage Pricing - ESS

- Volume type (based on performance)
- Storage volume in GB per month provisionned
- IOPS:
 - General Purpose SSD: Included
 - Provisioned IOPS SSD: Provisionned amount in IOPS
 - Magnetic: Number of requests
- Snapshots:
 - · Added data cost per GB per month
- Data transfer:
 - Outbound data transfer are tiered for volume discounts
 - Inbound is free

Database Pricing - RDS

- Per hour billing
- Database characteristics:
 - Engine
 - Size
 - Memory dass
- Purchase type:
 - On-demand
 - Reserved instances (1 or 3 years) with required up-front
- Backup Storage: There is no additional charge for backup storage up to 100% of your total database storage for a region.

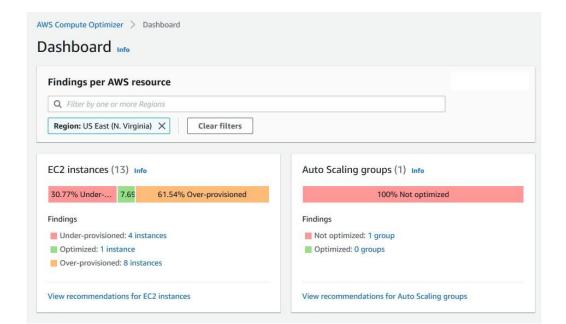
Database Pricing - RDS

- Additional storage (per GB per month)
- Number of input and output requests per month
- Deployment type (storage and I/O are variable):
 - Single AZ
- Multiple AZs
- Data transfer:
 - Outbound data transfer are tiered for volume discounts
 - Inbound is free

Content Delivery - CloudFront

- Pricing is different across different geographic regions
- Aggregated for each edge location, then applied to your bill
- DataTransfer Out (volume discount)
- Number of HTTP/HTTPS requests

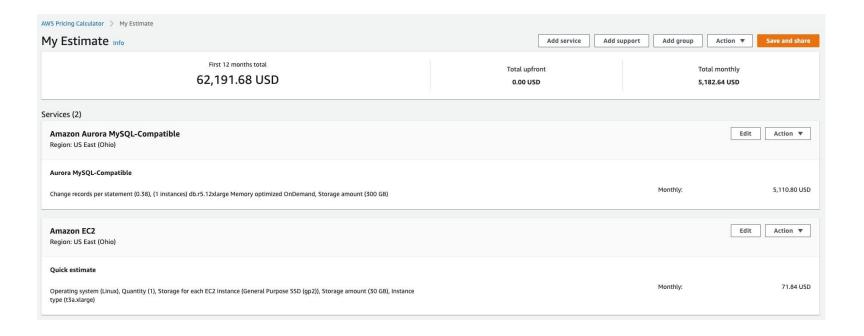
Per Month	United States & Canada	Europe & Israel	South Africa, Kenya, & Middle East	South America	Japan	Australia	Singapore, South Korea, Taiwan, Hong Kong, & Philippines	India
First 10TB	\$0.085	\$0.085	\$0.110	\$0.110	\$0.114	\$0.114	\$0.140	\$0.170
Next 40TB	\$0.080	\$0.080	\$0.105	\$0.105	\$0.089	\$0.098	\$0.135	\$0.130
Next 100TB	\$0.060	\$0.060	\$0.090	\$0.090	\$0.086	\$0.094	\$0.120	\$0.110


Savings Plan

- Commit acertain \$ amount per hour for 1 or 3 years
- Easiest way to setup long-term commitments on AWS
- EC2 Savings Plan
 - Up to 72% discount compared to On-Demand
 - Commit to usage of individual instance families in a region (e.g. C5 or M5)
 - Regardless of AZ, size (m5.xl to m5.4xl), OS (Linux/Windows) or tenancy
 - All upfront, partial upfront, no upfront
- Compute Savings Plan
 - Up to 66% discount compared to On-Demand
 - Regardless of Family, Region, size, OS, tenancy, compute options
 - Compute Options: EC2, Fargate, Lambda
- Machine Learning Savings Plan: SageMaker...
- Setup from the AWS Cost Explorer console
- Estimate pricing at https://aws.amazon.com/savingsplans/pricing/

AWS Compute Optimizer

- Reduce costs and improve performance by recommending optimal AWS resources for your workloads
- Helps you choose optimal configurations and rightsize your workloads (over/under provisioned)
- Uses Machine Learning to analyze your resources' configurations and their utilization CloudWatch metrics
- Supported resources
 - EC2 instances
 - EC2 Auto Scaling Groups
 - BS volumes
 - Lambda functions
- Lower your costs by up to 25%
- Recommendations can be exported to S3



Billing and Costing Tools

- Estimating costs in the cloud:
 - Pricing Calculator
- Tracking costs in the cloud:
 - Billing Dashboard
 - Cost Allocation Tags
 - Cost and Usage Reports
 - Cost Explorer
- Monitoring against costs plans:
 - Billing Alarms
 - Budgets

AWS Pricing Calculator

- Available at https://calculator.aws/
- Estimate the cost for your solution architecture

Cost Allocation Tags

- Use cost allocation tags to track your AWS costs on a detailed level
- AWS generated tags
 - Automatically applied to the resource you create
 - Starts with Prefix aws: (e.g. aws: createdBy)
- User-defined tags
 - Defined by the user
 - Starts with Prefix user:

Total Cost	user:Owner	user:Stack	user:Cost Center	user:Application
0.95	DbAdmin	Test	80432	Widget2
0.01	DbAdmin	Test	80432	Widget2
3.84	DbAdmin	Prod	80432	Widget2
6.00	DbAdmin	Test	78925	Widget1
234.63	SysEng	Prod	78925	Widget1
0.73	DbAdmin	Test	78925	Widget1
0.00	DbAdmin	Prod	80432	Portal
2.47	DbAdmin	Prod	78925	Portal

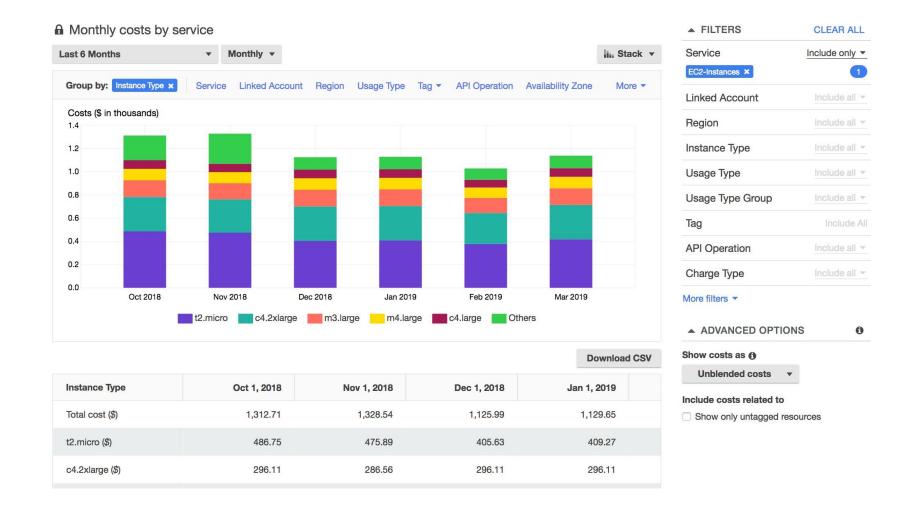
Tagging and Resource Groups

- Tags are used for organizing resources:
 - EC2: instances, images, load balancers, security groups...
 - RDS,VPC resources, Route 53, IAM users, etc...
 - Resources created by CloudFormation are all tagged the same way
- Free naming, common tags are: Name, Environment, Team ...
- Tags can be used to create Resource Groups
 - · Create, maintain, and view a collection of resources that share common tags
 - Manage these tags using the Tag Editor

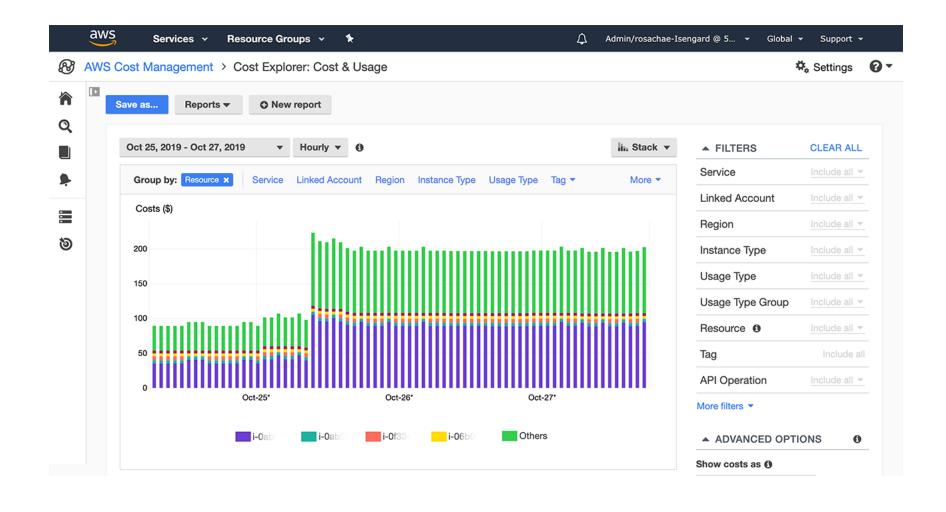
Cost and Usage Reports

- Dive deeper into your AWS costs and usage
- The AWS Cost & Usage Report contains the most comprehensive set of AWS cost and usage data available, including additional metadata about AWS services, pricing, and reservations (e.g., Amazon EC2 Reserved Instances (RIs)).
- The AWS Cost & Usage Report lists AWS usage for each service category used by an account and its IAM users in hourly or daily line items, as well as any tags that you have activated for cost allocation purposes.
- Can be integrated with Athena, Redshift or QuickSight

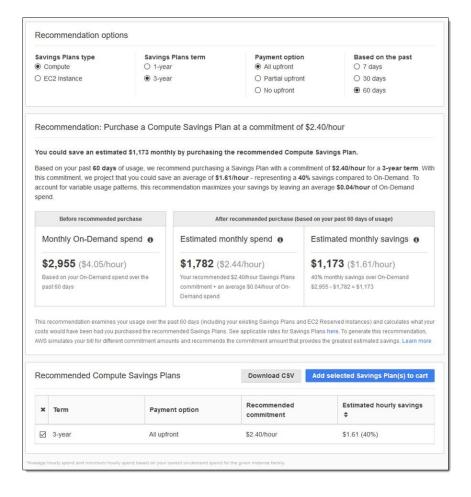
Cost and Usage Reports


M	N	0	Р	R	S	T
lineItem/ProductCode	lineItem/UsageType	lineItem/Operation	lineItem/AvailabilityZone	lineItem/UsageAmount	lineItem/CurrencyCode	lineItem/LineItemDescription
AmazonEC2	CW:AlarmMonitorUsage	Unknown		0.00134409	USD	\$0.00 per alarm-month - first 10 alarms
AmazonS3	Requests-Tier1	ListAllMyBuckets		2	USD	\$0.00 per request - PUT, COPY, POST, or LIST requests under the monthly global free tier
AmazonEC2	CW:AlarmMonitorUsage	Unknown		0.00134409	USD	\$0.00 per alarm-month - first 10 alarms
AmazonEC2	APS2-EBS:VolumeUsage.gp2	CreateVolume-Gp2		0.01344086	USD	\$0.00 per GB-month of General Purpose (SSD) provisioned storage under monthly free tier
AmazonEC2	APS2-EBS:VolumeUsage.gp2	CreateVolume-Gp2		0.01344086	USD	\$0.00 per GB-month of General Purpose (SSD) provisioned storage under monthly free tier
AmazonEC2	USW2-BoxUsage:t2.micro	RunInstances:0002	us-west-2a	1	USD	\$0.00 per Windows t2.micro instance-hour (or partial hour) under monthly free tier
AmazonEC2	USW2-USE1-AWS-Out-Bytes	PublicIP-Out		0.00000174	USD	\$0.000 per GB - data transfer out under the monthly global free tier
AmazonEC2	USW2-USE1-AWS-In-Bytes	PublicIP-In		0.00000138	USD	\$0.00 per GB - US West (Oregon) data transfer from US East (Northern Virginia)
AmazonEC2	USW2-USW1-AWS-In-Bytes	PublicIP-In		0.00000149	USD	\$0.00 per GB - US West (Oregon) data transfer from US West (Northern California)
AmazonS3	Requests-Tier1	ListAllMyBuckets		2	USD	\$0.00 per request - PUT, COPY, POST, or LIST requests under the monthly global free tier
AmazonEC2	USW2-DataTransfer-Out-Bytes	RunInstances		0.00038144	USD	\$0.000 per GB - data transfer out under the monthly global free tier
AmazonEC2	USW2-USW1-AWS-Out-Bytes	PublicIP-Out		0.00000174	USD	\$0.000 per GB - data transfer out under the monthly global free tier
AmazonEC2	USW2-DataTransfer-In-Bytes	RunInstances		0.00030951	USD	\$0.000 per GB - data transfer in per month
AmazonEC2	USW2-BoxUsage:t2.micro	RunInstances:0002	us-west-2a	1	USD	\$0.00 per Windows t2.micro instance-hour (or partial hour) under monthly free tier
AmazonEC2	USW2-USW1-AWS-Out-Bytes	PublicIP-Out		0.00000349	USD	\$0.000 per GB - data transfer out under the monthly global free tier
AmazonEC2	USW2-USW1-AWS-In-Bytes	PublicIP-In		0.00000276	USD	\$0.00 per GB - US West (Oregon) data transfer from US West (Northern California)
AmazonEC2	APS2-EBS:VolumeUsage.gp2	CreateVolume-Gp2		0.01344086	USD	\$0.00 per GB-month of General Purpose (SSD) provisioned storage under monthly free tier
AmazonEC2	CW:AlarmMonitorUsage	Unknown		0.00134409	USD	\$0.00 per alarm-month - first 10 alarms
AmazonEC2	USW2-BoxUsage:t2.micro	RunInstances:0002	us-west-2a	1	USD	\$0.00 per Windows t2.micro instance-hour (or partial hour) under monthly free tier
AmazonEC2	USW2-DataTransfer-Regional-Bytes	PublicIP-Out		0.00000349	USD	\$0.000 per GB - regional data transfer under the monthly global free tier
AmazonEC2	USW2-DataTransfer-In-Bytes	RunInstances		0.00032071	USD	\$0.000 per GB - data transfer in per month
AmazonEC2	USW2-DataTransfer-Regional-Bytes	PublicIP-In		0.00000302	USD	\$0.000 per GB - regional data transfer under the monthly global free tier
AmazonEC2	USW2-USE1-AWS-Out-Bytes	PublicIP-Out		0.00000174	USD	\$0.000 per GB - data transfer out under the monthly global free tier
AmazonEC2	USW2-DataTransfer-Out-Bytes	RunInstances		0.00045736	USD	\$0.000 per GB - data transfer out under the monthly global free tier
AmazonEC2	USW2-DataTransfer-In-Bytes	RunInstances		0.00036737	USD	\$0.000 per GB - data transfer in per month
AmazonEC2	USW2-APN2-AWS-In-Bytes	PublicIP-In		0.00000005	USD	\$0.00 per GB - US West (Oregon) data transfer from Asia Pacific (Seoul)
AmazonEC2	USW2-APN2-AWS-Out-Bytes	PublicIP-Out		0.0000018	USD	\$0.000 per GB - data transfer out under the monthly global free tier
AmazonEC2	USW2-USE1-AWS-In-Bytes	PublicIP-In		0.00000153	USD	\$0.00 per GB - US West (Oregon) data transfer from US East (Northern Virginia)
AmazonEC2	USW2-DataTransfer-Out-Bytes	RunInstances		0.00039945	USD	\$0.000 per GB - data transfer out under the monthly global free tier
AmazonEC2	CW:AlarmMonitorUsage	Unknown		0.00134409	USD	\$0.00 per alarm-month - first 10 alarms

Cost Explorer



- Visualize, understand, and manage your AWS costs and usage over time
- Create custom reports that analyze cost and usage data.
- Analyze your data at a high level: total costs and usage across all accounts
- Or Monthly, hourly, resource level granularity
- Choose an optimal Savings Plan (to lower prices on your bill)
- Forecast usage up to 12 months based on previous usage


Cost Explorer - Monthly Cost by AWS Service

Cost Explorer- Hourly & Resource Level

Cost Explorer – Savings Plan Alternative to Reserved Instances

Cost Explorer - Forecast Usage

Billing Alarms in Cloud Watch

- Billing data metric is stored in CloudWatch us-east-1
- Billing data are for overall worldwide AWS costs
- It's for actual cost, not for projected costs
- Intended a simple alarm (not as powerful as AWS Budgets)

AWS Budgets

- Create budget and send alarms when costs exceeds the budget
- 3 types of budgets: Usage, Cost, Reservation
- For Reserved Instances (RI)
 - Track utilization
 - Supports EC2, ElastiCache, RDS, Redshift
- Up to 5 SNS notifications per budget
- Can filter by: Service, Linked Account, Tag, Purchase Option, Instance Type, Region, Availability Zone, API Operation, etc...
- Same options as AWS Cost Explorer!
- 2 budgets are free, then \$0.02/day/budget

Trusted Advisor

- No need to install anything high level AWS account assessment
- Analyze your AWS accounts and provides recommendation on 5 categories
- Cost optimization
- Performance
- Security
- Fault tolerance
- Service limits

Checks

Amazon EBS Public Snapshots

Checks the permission settings for your Amazon Elastic 0 EBS snapshots are marked as public.

Amazon RDS Public Snapshots

Checks the permission settings for your Amazon Relation public.

0 RDS snapshots are marked as public.

This check is intended to discourage the use of root acce At least one IAM user has been created for this account.

Trusted Advisor - Support Plans

- 7 CORE CHECKS
- <u>Basic</u> & <u>Developer</u> Support plan

FULL CHECKS

Business & Enterprise Support plan

- S3 Bucket Permissions
- Security Groups Specific Ports Unrestricted
- IAM Use (one IAM user minimum)
- MFA on Root Account
- EBS Public Snapshots
- RDS Public Snapshots
- Service Limits

- Full Checks available on the 5 categories
- Ability to set CloudWatch alarms when reaching limits
- Programmatic Access using <u>AWS Support API</u>

AWSSupport Plans Pricing

• Basic Support: free

Developer

Greater of \$29.00

- or -

3% of monthly AWS charges

Business

Greater of \$100.00

- or -

10% of monthly AWS charges for the first \$0--\$10K

7% of monthly AWS charges from \$10K--\$80K

5% of monthly AWS charges from \$80K--\$250K

3% of monthly AWS charges over \$250K

Enterprise On-Ramp

Greater of \$5,500.00

- or -

10% of monthly AWS charges

Enterprise

Greater of \$15,000.00

- or -

10% of monthly AWS charges for the first \$0--\$150K

7% of monthly AWS charges from \$150K--\$500K

5% of monthly AWS charges from \$500K--\$1M

3% of monthly AWS charges over \$1M

AWS Basic Support Plan

- Customer Service & Communities 24x7 access to customer service, documentation, whitepapers, and support forums.
- AWS Trusted Advisor Access to the 7 core Trusted Advisor checks and guidance to provision your resources following best practices to increase performance and improve security.
- AWS Personal Health Dashboard A personalized view of the health of AWS services, and alerts when your resources are impacted.

AWS Developer Support Plan

- All Basic Support Plan +
- Business hours email access to Cloud Support Associates
- Unlimited cases / 1 primary contact
- Case severity / response times:
 - General guidance: < 24 business hours
 - System impaired: < 12 business hours

AWS Business Support Plan (24/7)

- Intended to be used if you have production workloads
- Trusted Advisor Full set of checks + API access
- 24x7 phone, email, and chat access to Cloud Support Engineers
- Unlimited cases / unlimited contacts
- Access to Infrastructure Event Management for additional fee.
- Case severity / response times:
 - General guidance: < 24 business hours
 - System impaired: < 12 business hours
 - Production system impaired: < 4 hours</p>
 - Production system down: < 1 hour

AWS Enterprise On-Ramp Support Plan (24/7)

- Intended to be used if you have production or business critical workloads
- All of Business Support Plan +
- Access to apool of Technical Account Managers (TAM)
- Concierge Support Team (for billing and account best practices)
- Infrastructure Event Management, Well-Architected & Operations Reviews
- Case severity / response times:
 - ...
 - Production system impaired: < 4 hours
 - Production system down: < 1 hour
 - Business-critical system down: < 30 minutes

AWS Enterprise Support Plan (24/7)

- Intended to be used if you have mission critical workloads
- All of Business Support Plan +
- Access to adesignated Technical Account Manager (TAM)
- Concierge Support Team (for billing and account best practices)
- Infrastructure Event Management, Well-Architected & Operations Reviews
- Case severity / response times:
 - •
 - Production system impaired: < 4 hours
 - Production system down: < 1 hour
 - Business-critical system down: < 15 minutes

Account Best Practices - Summary

- Operate multiple accounts using Organizations
- Use SCP (service control policies) to restrict account power
- Easily setup multiple accounts with best-practices with AWS Control Tower
- Use Tags & Cost Allocation Tags for easy management & billing
- IAM guidelines: MFA, least-privilege, password policy, password rotation
- Config to record all resources configurations & compliance over time
- CloudFormation to deploy stacks across accounts and regions
- Trusted Advisor to get insights, Support Plan adapted to your needs
- Send Service Logs and Access Logs to S3 or CloudWatch Logs
- CloudTrail to record API calls made within your account
- If your Account is compromised: change the root password, delete and rotate all passwords / keys, contact the AWS support

Billing and Costing Tools - Summary

- Compute Optimizer: recommends resources' configurations to reduce cost
- Pricing Calculator: cost of services on AWS
- Billing Dashboard: high level overview + free tier dashboard
- Cost Allocation Tags: tag resources to create detailed reports
- Cost and Usage Reports: most comprehensive billing dataset
- Cost Explorer: View current usage (detailed) and forecast usage
- Billing Alarms: in us-east-1 track overall and per-service billing
- Budgets: more advanced track usage, costs, RI, and get alerts
- Savings Plans: easy way to save based on long-term usage of AWS

AWS Backup

- Fully-managed service to centrally manage and automate backups across AWS services
- On-demand and scheduled backups
- Supports PITR (Point-in-time Recovery)
- Retention Periods, Lifecycle Management, Backup Policies, ...
- Cross-Region Backup
- Cross-Account Backup (using AWS Organizations)

AWS Architecting & Ecosystem Section

Well Architected Framework 6 Pillars

- 1) Operational Excellence
- 2) Security
- 3) Reliability
- 4) Performance Efficiency
- 5) Cost Optimization
- 6) Sustainability
- They are not something to balance, or trade-offs, they're a synergy

1) Operational Excellence

- Includes the ability to run and monitor systems to deliver business value and to continually improve supporting processes and procedures
- Design Principles
 - Perform operations as code Infrastructure as code
 - Annotate documentation Automate the creation of annotated documentation after every build
 - Make frequent, small, reversible changes So that in case of any failure, you can reverse it
 - Refine operations procedures frequently And ensure that team members are familiar with it
 - Anticipate failure
 - Learn from all operational failures

Operational Excellence AWS Services

• Prepare

AWS Config

Operate

AWS CloudFormation

AWS Config

AWS CloudTrail

Amazon CloudWatch

AWS X-Ray

Evolve

AWS CloudFormation

AWS CodeBuild

AWS CodeCommit

AWS CodeDeploy

AWS CodePipeline

2) Security

- Includes the ability to protect information, systems, and assets while delivering business value through risk assessments and mitigation strategies
- Design Principles
 - Implement a strong identity foundation Centralize privilege management and reduce (or even eliminate) reliance on long-term credentials Principle of least privilege IAM
 - Enable traceability Integrate logs and metrics with systems to automatically respond and take action
 - Apply security at all layers Like edge network, VPC, subnet, load balancer, every instance, operating system, and application
 - Automate security best practices
 - Protect data in transit and at rest Encryption, tokenization, and access control
 - Keep people away from data Reduce or eliminate the need for direct access or manual processing of data
 - Prepare for security events Run incident response simulations and use tools with automation to increase your speed for detection, investigation, and recovery
 - Shared Responsibility Model

Security AWS Services

• Identity and Access Management

IAM

AWS-STS

MFA token

AWS Organizations

Detective Controls

AWS Config

AWS CloudTrail

Amazon CloudWatch

Infrastructure Protection

Amazon CloudFront

Amazon VPC

AWS Shield

AWS WAF

Amazon Inspector

• Data Protection:

KMS

Elastic Load Balancing (ELB)

• Incident Response

IAM

AWS CloudFormation

Amazon CloudWatch Events

3) Reliability

- Ability of a system to recover from infrastructure or service disruptions, dynamically acquire computing resources to meet demand, and mitigate disruptions such as misconfigurations or transient network issues
- Design Principles
 - Test recovery procedures Use automation to simulate different failures or to recreate scenarios that led to failures before
 - Automatically recover from failure Anticipate and remediate failures before they occur
 - Scale horizontally to increase aggregate system availability Distribute requests across multiple, smaller resources to ensure that they don't share a common point of failure
 - Stop guessing capacity Maintain the optimal level to satisfy demand without over or under provisioning - Use Auto Scaling
 - Manage change in automation Use automation to make changes to infrastructure

Reliability **AWS Services**

Foundations

Amazon VPC

Service Quotas

Amazon CloudWatch

AWS CloudTrail

AWS Config

• Failure Management

Backups

AWS CloudFormation

Amazon S3

Amazon S3 Glacier

Amazon Route 53

4) Performance Efficiency

- Includes the ability to use computing resources efficiently to meet system requirements, and to maintain that efficiency as demand changes and technologies evolve
- Design Principles
 - Democratize advanced technologies Advance technologies become services and hence you can focus more on product development
 - Go global in minutes Easy deployment in multiple regions
 - Use serverless architectures Avoid burden of managing servers
 - Experiment more often Easyto carry out comparative testing
 - Mechanical sympathy Be aware of all AWS services

Performance Efficiency **AWS Services**

Selection



AWS Auto Scaling

AWS News Blog

(EBS)

Review

AWS CloudFormation

Monitoring

Tradeoffs

Amazon RDS

Amazon ElastiCache

AWS Snowball

Amazon CloudFront

5) Cost Optimization

- Includes the ability to run systems to deliver business value at the lowest price point
- Design Principles
 - Adopt a consumption mode Payonly for what you use
 - Measure overall efficiency Use CloudWatch
 - Stop spending money on data center operations AWS does the infrastructure part and enables customer to focus on organization projects
 - Analyze and attribute expenditure Accurate identification of system usage and costs, helps measure return on investment (ROI) - Make sure to use tags
 - Use managed and application level services to reduce cost of ownership As managed services operate at cloud scale, they can offer allower cost per transaction or service

Cost Optimization **AWS Services**

• Expenditure Awareness

Cost-Effective Resources

Optimizing Over Time

Matching supply and demand

AWS Lambda

AWS News Blog

6) Sustainability

- The sustainability pillar focuses on minimizing the environmental impacts of running cloud workloads.
- Design Principles
 - Understand your impact establish performance indicators, evaluate improvements
 - Establish sustainability goals Set long-term goals for each workload, model return on investment (ROI)
 - Maximize utilization Right size each workload to maximize the energy efficiency of the underlying hardware and minimize idle resources.
 - Anticipate and adopt new, more efficient hardware and software offerings and design for
 - flexibility to adopt new technologies over time.

 Use managed services Shared services reduce the amount of infrastructure; Managed services help automate sustainability best practices as moving infrequent accessed data to cold storage and adjusting compute capacity.
 - Reduce the downstream impact of your cloud workloads Reduce the amount of energy or resources required to use your services and reduce the need for your customers to upgrade their devices

Sustainability AWS Services

- EC2 Auto Scaling, Serverless Offering (Lambda, Fargate)
- Cost Explorer, AWS Graviton 2, EC2T instances, @Spot Instances
- EFS-IA, Amazon S3 Glacier, EBSCold HDD volumes
- S3 Lifecycle Configurations, S3 Intelligent **Tiering**
- Amazon Data Lifecycle Manager
- Read Local, Write Global: RDS Read Replicas, Aurora Global DB, Dynamo DB Global Table, CloudFront

EC2 Auto Scaling

Lambda

EC2 (Graviton, T) **Cost Explorer**

Spot Instances

EFS-IA

S3 Glacier

EBS Cold HDD

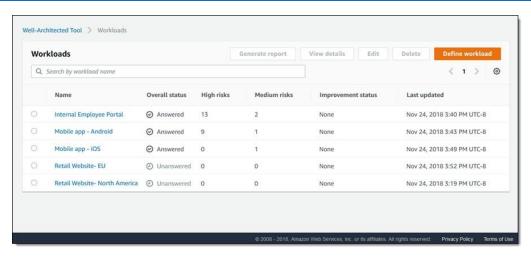
S3 Intelligent Tiering

Data Lifecycle Manager

RDS

Aurora

DynamoDB


CloudFront

AWSWell-Architected Tool

- Free tool to review your architectures against the 6 pillars Well-Architected Framework and adopt architectural best practices
- How does it work?
 - Select your workload and answer questions
 - Review your answers against the 6 pillars
 - · Obtain advice: get videos and documentations, generate a report, see the results in a dashboard
- Let's have alook: https://console.aws.amazon.com/wellarchitected

https://aws.amazon.com/blogs/aws/new-aws-well-architected-tool-review-workloads-against-best-practices/

AWS Ecosystem - AWS Support

	Business hours email access to Cloud Support Associates
DEVELOPER	 General guidance: < 24 business hours
	• System impaired: < 12 business hours
	• 24x7 phone, email, and chat access to Cloud Support Engineers
BUSINESS	 Production system impaired: < 4 hours
	• Production system down: < 1 hour
	Access to a Technical Account Manager (TAM)
ENTERPRISE	Concierge Support Team (for billing and account best practices)
	• Business-critical system down: < 15 minutes